All-silicon tracker for a multi-TeV Muon Collider

Nazar Bartosik on behalf of the Muon Collider Physics and Detector Group

Muon Collider environment

Very clean final state

+ <u>Beam Induced Background</u> (BIB) muon decay products interacting with the accelerator lattice

Massive tungsten nozzles around the beam pipe essential for BIB suppression **b**

 \rightarrow ~10⁸ particles survive reaching the detector in every bunch crossing (BX) leading to extreme hit density: up to 5K hits/cm² in the Vertex Detector (VXD) and TID of ~1 Mrad/y and 1-MeV-neq fluence of ~1014-15 cm-2 y-1

100 kHz collision rate \rightarrow 10 µs for processing all the hits

BIB rejection methods

Distinct features of BIB particles allow suppression of their contribution at the level of readout electronics and reconstruction algorithms

<u>1.</u> Late time of arrival						
				- neutrons		
				mbatana		jti –

MuCo

Narrow readout time window tuned for Time Of Flight (TOF) from the Interaction Point (IP)

Selecting double-hit stubs pointing towards the IP

Significant contribution from secondary e[±] produced by BIB interacting with the tracker

High-priority technology R&D

Several technical requirements must be met to enable effective BIB suppression

Fast timing $\sigma_t \leq 30 \text{ ps}$ in VXD	High granularity $\leq 50 \times 50 \ \mu m^2$ in VXE	On-detector intelligence	
to reject out-of-time BIB hits	for cluster-shape discrimination	to minimise data bandwidth	
3D integration of readout electronics	Low power consumption	High radiation tolerance \leq 10 Mrad	
for extremely low material budget	consistent with air cooling	comparable to HL-LHC requirements	

Low pr

A number of ongoing R&D projects inline with these requirements: AC/DC-RSD, CMOS MAPS, 3DIC \rightarrow more extensive overview of promising detector technologies: <u>arXiv:2203.07224</u>