Strings 2024
CERN, Geneva

Black Holes from Supercharge Cohomology

Chi-Ming Chang

Tsinghua University

- Talk based on collaboration with
- Xi Yin (Harvard University)
- Jingxiang Wu (Oxford University)
- Yi-Xiao Tao (Tsinghua University)
"1/16 BPS states in N = 4 super-Yang-Mills theory" arXiv:1305.6314
"Words to describe a black hole" arXiv:2209.06728
"Decoding stringy near-supersymmetric black holes" arXiv:2306.04673
"Holographic covering and the fortuity of black holes" arXiv:2402.10129
"On 1/8-BPS black holes and the chiral algebra of N=4 SYM" arXiv:2310.20086

See also:

- Choi, Choi, Kim, Lee, Lee, Lee, Park [CCKLLLP]
"The shape of non-graviton operators for SU(2)" arXiv:2209.12696
"Towards quantum black hole microstates" arXiv:2304.10155
"Finite N black hole cohomologies" arXiv:2312.16443
- Budzik, Gaiotto, Kulp, Williams, Wu, Yu [BGKWWY] and Budzik, Murali, Vieira [BMV] "Semi-Chiral Operators in 4d N=1 Gauge Theories" arXiv:2306.01039
"Following Black Hole States" arXiv:2306.04693
- Talks in previous Strings:

2013: Xi Yin "Comments on BPS states in N=4 SYM"
2023: Seok Kim "Black hole cohomologies in N=4 Yang-Mills"

Motivation

- There are large BPS black holes in AdS_{5} [Gutowski-Reall '04, Chong-Cvetic-Lu-Pope '05, ...]. We would like to understand their microstates using the dual CFT.
- The N^{2} growth of their entropy can be reproduced by the superconformal index. [(Cabo-Bizet)-Cassani-Martelli-Murthy, Choi-Kim-Kim-Nahmgoong, Benini-Milan '18]
- Given a non-perturbatively complete framework of AdS/CFT, we should be able to answer more refined questions:
- What are the wave functions and dynamics of the microstates?
- How do we distinguish a weakly bound state of N^{2} gravitons from typical black hole microstates?

Motivation

- Obstacle: Holography is a strong/weak duality. Black holes exist at large N and strong 't Hooft coupling, and are hard to study from the CFT side.
- Two ways to proceed:
- Study toy models, such as lower-dimensional holography
- Focus on physical quantities protected by supersymmetry
- Supercharge cohomology is semi-protected by SUSY and reveals much richer information beyond state counting.

Motivation

- Semi-protection by SUSY is due to a non-renormalization conjecture
- Supercharge cohomology is invariant along the conformal manifold of the boundary CFT away from free points.
- Evidence: 1. Matching BPS spectrum at infinite N (see later)

2. Consistency with S-duality of $\mathrm{N}=4 \mathrm{SYM}$ and $\mathrm{N}=2$ theories
[CC-Choi-Dong-Yan WIP]

- New information beyond the superconformal index:
- Complete BPS spectrum (It counts BPS states without (-1$)^{F}$.)
- Information on the wave functions of BPS states (modulo exact terms in cohomology) and how they are related in theories at different ranks N.

Outline

- Introduction to supercharge cohomology
- A classification: monotone (graviton) vs. fortuitous (black holes)
- Bulk duals of supercharge cohomologies
- Fortuitous supercharge cohomologies and black holes

Supercharge Cohomology

Supercharge Cohomology

- Supercharge cohomology can be defined very generally. It only needs a supercharge Q that is nilpotent $Q^{2}=0$.

The main focus in this talk:

4d maximal SYM with $\mathrm{SU}(N)$ gauge group

- Pick a pair $Q \& S=Q^{\dagger}$ out of $16 Q$ and $16 S$.

BPS bound: $\quad \Delta=2\left\{Q, Q^{\dagger}\right\}=E-\left(J_{1}+J_{2}+q_{1}+q_{2}+q_{3}\right) \geq 0$
BPS states are states with $\Delta=0 . \quad\left(\right.$ spins J_{i}, R-charges q_{i})

Supercharge Cohomology

- Nilpotency $Q^{2}=0$.

$$
Q \text {-cohomology }=\frac{\{O \mid Q O=0\}}{\left\{O \mid O=Q O^{\prime}\right\}}
$$

- Hodge theory argument:

$$
Q \text {-cohomology classes } \stackrel{1 \text { to } 1}{\longleftrightarrow} \text { BPS states }\left(\Delta=2\left\{Q, Q^{\dagger}\right\}=0\right)
$$

- The non-renormalization conjecture (Q-cohomology is independent of $g_{\mathrm{YM}} \neq 0$) allows us to compute Q-cohomology at weak coupling $g_{\mathrm{YM}} \ll 1$

Weak-Coupling Setup

- At weak couplings, local operators could be written in terms of multitraces of fundamental fields with covariant derivatives (both $N \times N$ matrices) and modulo trace relations.
- Trace relations play an important role in the study of supercharge cohomology. A simple example of trace relations is e.g. for any 2×2 matrix $X, 2 \operatorname{Tr} X^{3}=3 \operatorname{Tr} X \operatorname{Tr} X^{2}-(\operatorname{Tr} X)^{3}$.
- A property of trace relations we will use later:
- $I_{N}=$ (space of trace relations at rank N). We have $I_{N+1} \subsetneq I_{N}$

Weak-Coupling Setup

- At weak coupling, it suffices to work with fundamental fields that are BPS in free theory. They can be assembled into a superfield $\Psi\left(z^{\alpha}, \theta_{i}\right)$ on superspace $\mathbb{C}^{2 \mid 3}$ with two bosonic coordinates $z^{\alpha}(\alpha= \pm)$ and three fermionic coordinates $\theta_{i}(i=1,2,3)$. [cc-Yin '13]

$$
\Psi\left(z^{\alpha}, \theta_{i}\right) \sim \lambda_{\alpha} z^{\alpha}+\phi^{i} \theta_{i}+\epsilon^{i j k} \psi_{i} \theta_{j} \theta_{k}+F_{++} \theta^{3}+\cdots
$$

- The Q action takes a very concise form

λ_{α} gauginos
$\phi^{i}=(X, Y, Z)$ complex scalars
ψ_{i} complex fermions
F_{++}self-dual field strength
(\cdots) covariant derivatives

$$
Q(\Psi)=\Psi^{2}
$$

A Classification of Cohomologies: Monotone vs. Fortuitous

A Classification of Cohomologies

- Let O represent a Q-cohomology class, and write O non-uniquely as a multitrace \tilde{O}.
- Monotone (graviton) cohomology:
- $Q \tilde{O}=0$ w/o using trace relations
- Admit infinite N limits with fixed \tilde{O}

- Fortuitous (black hole) cohomology:
- $Q \tilde{O}=$ (a nontrivial trace relation)
- No infinite N limit (with fixed \tilde{O})

- The precise definition is given by a long exact sequence. [CC-Lin '24]

Monotones in $\mathcal{N}=4$ SYM

- Consider one-forms on the superspace $\mathbb{C}^{2 \mid 3}$: basis $d z^{\alpha}, d \theta_{i}$

$$
d \Psi \equiv d z^{\dot{\alpha}} \partial_{z^{z}} \Psi+d \theta_{i} \partial_{\theta_{i}} \Psi
$$

Supercharge action: $Q d \Psi=[\Psi, d \Psi]$

- The multitrace $\operatorname{Tr}\left[(d \Psi)^{n_{1}}\right] \cdots \operatorname{Tr}\left[(d \Psi)^{n_{L}}\right]$ is Q-closed and not Q-exact without using trace relations.
- In fact, all monotone Q-cohomologies could be obtained by imposing trace relations at some finite N on $\operatorname{Tr}\left[(d \Psi)^{n_{1}}\right] \cdots \operatorname{Tr}\left[(d \Psi)^{n_{L}}\right]$. [CC-Yin '13] [BGKWWY '23]

Fortuitous in $\mathcal{N}=4$ SYM

- By a brute force comprehensive search in the $\operatorname{SU}(2)$ theory up to high spin and R-charges, we found the first fortuitous Q-cohomology. [cc-Lin '22]
- Very hard to find (1 in 10^{5} cohomology classes) (Doesn't mean fortuitous are few!)
- Explicit representative [Choi-Kim-Lee-Park '22] : $\partial^{i_{1} \cdots i_{n}} \equiv \partial_{\theta_{i_{1}}} \cdots \partial_{\theta_{i_{n}}}$
$O=\epsilon_{i_{1} i_{2} i_{3}} \epsilon_{j_{1} j_{2} j_{3}} \epsilon_{l_{1} l_{2} l_{3}} \epsilon_{m_{1} m_{2} m_{3}} \epsilon^{k_{1} l_{1} m_{1}} \operatorname{Tr}\left(\partial^{i_{1}} \Psi \partial^{k_{2} k_{3}} \Psi\right) \operatorname{Tr}\left(\partial^{j_{1}} \Psi \partial^{l_{2} l_{3}} \Psi\right) \operatorname{Tr}\left(\partial^{i_{2} i_{3}} \Psi \partial^{j_{2} j_{3}} \Psi \partial^{m_{2} m_{3}} \Psi\right)$
- Working in the BMN sector (only $\partial_{\theta_{i}}$ and no $\partial_{z^{\dot{\alpha}}}$), [CCKLLLP '22, '23] performed a more efficient search and achieved the following results:
- SU(2) and SU(3): multiple infinite towers of fortuitous cohomologies
- SU(4): leading fortuitous cohomology

Bulk Duals of Q-cohomologies

Intuitions for the bulk duals

- While supercharge cohomology is independent of the 't Hooft coupling λ, we will focus on large λ and look for bulk duals in supergravity.
- Given some classical BPS solutions in supergravity, consider $G_{N} \rightarrow 0$ $(N \rightarrow \infty)$ limit with fixed spins and charges (and energy by BPS condition).
- Smooth horizonless solutions: Remain smooth horizonless and become perturbative particles in AdS - similar to monotone cohomologies.
- Black hole solutions: $S=A / 4 G_{N}$ fixed as $G_{N} \rightarrow 0$. The solutions become naked singularities - similar to fortuitous cohomologies.

Bulk Duals of Monotones

- Monotone Q-cohomologies at infinite N are dual to BPS multi-particles in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$.
- Evidence: The counting of the multitraces $\operatorname{Tr}\left[(d \Psi)^{n_{1}}\right] \cdots \operatorname{Tr}\left[(d \Psi)^{n_{L}}\right]$ matches with the BPS multi-graviton partition function. [Cc-Yin '13]
- Conjecture [cc-Lin '24]: Monotone Q-cohomologies at finite N are dual to quantizations of smooth horizonless solutions in supergravity.
- Evidence: The partition function of half-BPS operators (all monotone) can be reproduced by a quantization of the Lin-Lunin-Maldacena (LLM) geometries (smooth horizonless half-BPS geometries).

Bulk Duals of Fortuitous?

- There are exponentially more fortuitous Q-cohomologies than monotone ones.

A typical black hole microstate is fortuitous.

- A bound on the number of monotone Q-cohomologies:

- The growth of the total number of all BPS states can be estimated by the superconformal index [CСММ, CKKN, BM '18].

$$
(\# \text { monotones })+(\# \text { fortuitous })=(\# \text { all BPS }) \sim e^{N^{2}}
$$

More on Fortuitous Cohomologies and Black Holes

Near-BPS States Above a Fortuitous State

- Small 't Hooft coupling λ and N
- O : representative of the previous fortuitous cohomology in $\mathrm{SU}(2) \mathrm{SYM}$.
- $\mathscr{H}_{\mathrm{BH}}=\left\{O+Q O^{\prime}\right\}$ for $Q O^{\prime}$ with the same J_{i}, q_{i}, and classical E as O.
- Diagonalize the one-loop $\Delta_{1 \text {-loop }}=2\left\{Q, Q^{\dagger}\right\}$. (ground state: O_{BH})
- Large 't Hooft coupling λ and N
- JT sugra on the near-horizon AdS_{2}
- a gap of order N^{-2} above the BPS states.

$$
\left.\frac{\text { gap }}{\text { average spacing }} \sim \frac{N^{-2}}{e^{-N^{2}}}\right|_{N=2} \sim 14
$$

[Boruch-Heydeman-Iliesiu-Turiaci '22] [Stanford-Witten'17]

Future Direction

- What is the bulk dual of an individual fortuitous BPS state? What is a typical black hole microstate?
- Construct fortuitous Q-cohomology at larger N (so far only $N=2,3,4$)
- $N \gtrsim 6$ maybe enough as S / N^{2} from SCl already shows convergence at $N \sim 6$
- A proposal: The bulk dual of a fortuitous BPS state is a coupled system of Dbranes in a supergravity background at strong 't Hooft coupling.
- Generalizations: supercharge cohomology in D1-D5 CFTs [CC-Lin-Zhang WIP], 4d $\mathrm{N}=2$ SCFTs [CC-Choi-Dong-Yan WIP], BMN matrix quantum mechanics, ...
- There is much more to be learned about black holes from supercharge cohomology!

