Strings 2024 CERN, Geneva

Black Holes from Supercharge Cohomology

Chi-Ming Chang

Tsinghua University

- Talk based on collaboration with
 - Xi Yin (Harvard University)
 - Jingxiang Wu (Oxford University)
 - Yi-Xiao Tao (Tsinghua University)
 - "1/16 BPS states in N = 4 super-Yang-Mills theory" arXiv:1305.6314
 - "Words to describe a black hole" arXiv:2209.06728
 - "Decoding stringy near-supersymmetric black holes" arXiv:2306.04673
 - "Holographic covering and the fortuity of black holes" arXiv:2402.10129
 - "On 1/8-BPS black holes and the chiral algebra of N=4 SYM" arXiv:2310.20086

- Ying-Hsuan Lin (Harvard University)
- Li Feng (Northeastern University)

See also:

- Choi, Choi, Kim, Lee, Lee, Lee, Park [CCKLLLP] "The shape of non-graviton operators for SU(2)" arXiv:2209.12696 "Towards quantum black hole microstates" arXiv:2304.10155 "Finite N black hole cohomologies" arXiv:2312.16443
- Budzik, Gaiotto, Kulp, Williams, Wu, Yu [BGKWWY] and Budzik, Murali, Vieira [BMV] "Semi-Chiral Operators in 4d N=1 Gauge Theories" arXiv:2306.01039 "Following Black Hole States" arXiv:2306.04693
- Talks in previous Strings: 2013: Xi Yin "Comments on BPS states in N=4 SYM" 2023: Seok Kim "Black hole cohomologies in N=4 Yang-Mills"

Motivation

- There are large BPS black holes in AdS_5 [Gutowski-Reall '04, Chong-Cvetic-Lu-Pope '05, ...]. We would like to understand their microstates using the dual CFT.
- The N^2 growth of their entropy can be reproduced by the superconformal index. [(Cabo-Bizet)-Cassani-Martelli-Murthy, Choi-Kim-Kim-Nahmgoong, Benini-Milan '18]
- Given a non-perturbatively complete framework of AdS/CFT, we should be able to answer more refined questions:
 - What are the wave functions and dynamics of the microstates?
 - How do we distinguish a weakly bound state of N^2 gravitons from typical black hole microstates?

Motivation

- Obstacle: Holography is a strong/weak duality. Black holes exist at large *N* and strong 't Hooft coupling, and are hard to study from the CFT side.
- Two ways to proceed:
 - Study toy models, such as lower-dimensional holography
 - Focus on physical quantities protected by supersymmetry
- Supercharge cohomology is semi-protected by SUSY and reveals much richer information beyond state counting.

Motivation

- Semi-protection by SUSY is due to a non-renormalization conjecture
 - Supercharge cohomology is invariant along the conformal manifold of the boundary CFT away from free points.
 - Evidence: 1. Matching BPS spectrum at infinite N (see later)
- New information beyond the superconformal index:
 - Complete BPS spectrum (It counts BPS states without $(-1)^{F}$.)
 - Information on the wave functions of BPS states (modulo exact terms in cohomology) and how they are related in theories at different ranks N.

2. Consistency with S-duality of N=4 SYM and N=2 theories [CC-Choi-Dong-Yan WIP]

Outline

- Introduction to supercharge cohomology
- A classification: monotone (graviton) vs. fortuitous (black holes)
- Bulk duals of supercharge cohomologies
- Fortuitous supercharge cohomologies and black holes

Supercharge Cohomology

Supercharge Cohomology

• Supercharge cohomology can be defined very generally. It only needs a supercharge Q that is nilpotent $Q^2 = 0$. The main focus in this talk:

- Pick a pair $Q \& S = Q^{\dagger}$ out of 16 Q and 16 S. BPS bound: $\Delta = 2\{Q, Q^{\dagger}\} = E - (J_1 + J_2 + q_1 + q_2 + q_3) \ge 0$ BPS states are states with $\Delta = 0$. (spins J_i , R-charges q_i)
- 4d maximal SYM with SU(N) gauge group

Supercharge Cohomology

• Nilpotency $Q^2 = 0$.

• Hodge theory argument:

1 to 1

$Q\text{-cohomology} = \frac{\{O \mid QO = 0\}}{\{O \mid O = OO'\}}$

Q-cohomology classes \longleftrightarrow BPS states ($\Delta = 2\{Q, Q^{\dagger}\} = 0$)

• The non-renormalization conjecture (Q-cohomology is independent of $g_{\rm YM} \neq 0$) allows us to compute Q-cohomology at weak coupling $g_{\rm YM} \ll 1$

Weak-Coupling Setup

- At weak couplings, local operators could be written in terms of multitraces of fundamental fields with covariant derivatives (both $N \times N$ matrices) and modulo trace relations.
- Trace relations play an important role in the study of supercharge cohomology. A simple example of trace relations is
 e.g. for any 2 × 2 matrix X, 2Tr X³ = 3Tr X Tr X² (Tr X)³.
- A property of trace relations we will use later: – $I_N =$ (space of trace relations at rank N). We have $I_{N+1} \subsetneq I_N$

Weak-Coupling Setup

• At weak coupling, it suffices to work with fundamental fields that are BPS in free theory. They can be assembled into a superfield $\Psi(z^{\alpha}, \theta_i)$ on superspace $\mathbb{C}^{2|3}$ with two bosonic coordinates z^{α} ($\alpha = \pm$) and three fermionic coordinates θ_i (i = 1, 2, 3). [CC-Yin '13]

$$\Psi(z^{\alpha},\theta_i) \sim \lambda_{\alpha} z^{\alpha} + \phi^i \theta_i + \epsilon^{ijk} \psi_i \theta_j \theta_k + F_{++} \theta^3 + \cdots,$$

• The Q action takes a very concise form

$$\lambda_{\alpha}$$
 gauginos
 $\phi^{i} = (X, Y, Z)$ complex sca
 ψ_{i} complex fermions
 F_{++} self-dual field strength
 (\cdots) covariant derivatives

$$\Psi$$
) = Ψ^2

A Classification of Cohomologies: Monotone vs. Fortuitous

A Classification of Cohomologies

- Monotone (graviton) cohomology:
 - $Q\tilde{O} = 0$ w/o using trace relations
 - Admit infinite N limits with **fixed** \tilde{O}

• The precise definition is given by a long exact sequence. [CC-Lin '24]

• Let O represent a Q-cohomology class, and write O non-uniquely as a multitrace O.

- Fortuitous (black hole) cohomology:
- $Q\tilde{O} = (a \text{ nontrivial trace relation})$
 - No infinite N limit (with fixed \tilde{O})

Monotones in $\mathcal{N} = 4$ SYM

• Consider one-forms on the superspace $\mathbb{C}^{2|3}$: basis dz^{α} , $d\theta_i$ $d\Psi \equiv dz^{\dot{\alpha}} \partial_{z^{\dot{\alpha}}} \Psi + d\theta_i \partial_{\theta_i} \Psi$

Supercharge action: $Qd\Psi = [\Psi, d\Psi]$

- The multitrace $\operatorname{Tr}[(d\Psi)^{n_1}]\cdots \operatorname{Tr}[(d\Psi)^{n_L}]$ is Q-closed and not Q-exact without using trace relations.
- In fact, all monotone Q-cohomologies could be obtained by imposing trace relations at some finite N on $\operatorname{Tr}\left[(d\Psi)^{n_1}\right]\cdots\operatorname{Tr}\left[(d\Psi)^{n_L}\right]$. [CC-Yin '13] [BGKWWY '23]

Fortuitous in $\mathcal{N} = 4$ SYM

- By a brute force comprehensive search in the SU(2) theory up to high spin and R-charges, we found the first fortuitous Q-cohomology. [CC-Lin '22]
- Very hard to find (1 in 10^5 cohomology classes) (Doesn't mean fortuitous are few!) - Explicit representative [Choi-Kim-Lee-Park '22]: $\partial^{i_1 \cdots i_n} \equiv \partial_{\theta_{i_1}} \cdots \partial_{\theta_{i_n}}$ $O = \epsilon_{i_1 i_2 i_3} \epsilon_{j_1 j_2 j_3} \epsilon_{l_1 l_2 l_3} \epsilon_{m_1 m_2 m_3} \epsilon^{k_1 l_1 m_1} \operatorname{Tr}(\partial^{i_1} \Psi \partial^{k_2 k_3} \Psi) \operatorname{Tr}(\partial^{j_1} \Psi \partial^{l_2 l_3} \Psi) \operatorname{Tr}(\partial^{i_2 i_3} \Psi \partial^{j_2 j_3} \Psi \partial^{m_2 m_3} \Psi)$

- Working in the BMN sector (only ∂_{θ_i} and no $\partial_{z^{\dot{\alpha}}}$), [CCKLLLP '22, '23] performed a more efficient search and achieved the following results:
 - SU(2) and SU(3): multiple infinite towers of fortuitous cohomologies
 - SU(4): leading fortuitous cohomology

Bulk Duals of Q-cohomologies

Intuitions for the bulk duals

- While supercharge cohomology is independent of the 't Hooft coupling λ , we will focus on large λ and look for bulk duals in supergravity.
- Given some classical BPS solutions in supergravity, consider $G_N \to 0$ ($N \to \infty$) limit with fixed spins and charges (and energy by BPS condition).
 - Smooth horizonless solutions: Remain smooth horizonless and become perturbative particles in AdS similar to monotone cohomologies.
 - Black hole solutions: $S = A/4G_N$ fixed as $G_N \rightarrow 0$. The solutions become naked singularities similar to fortuitous cohomologies.

Bulk Duals of Monotones

- Monotone Q-cohomologies at infinite N are dual to BPS multi-particles in $AdS_5 \times S^5$.
 - Evidence: The counting of the multitraces $\text{Tr}\left[(d\Psi)^{n_1}\right]\cdots\text{Tr}\left[(d\Psi)^{n_L}\right]$ matches with the BPS multi-graviton partition function. [CC-Yin '13]
- Conjecture [CC-Lin '24] : Monotone Q-cohomologies at finite N are dual to quantizations of smooth horizonless solutions in supergravity.
 - Evidence: The partition function of half-BPS operators (all monotone) can be reproduced by a quantization of the Lin-Lunin-Maldacena (LLM) geometries (smooth horizonless half-BPS geometries).

Bulk Duals of Fortuitous?

- There are exponentially more fortuitous Q-cohomologies than monotone ones.
 - A typical black hole microstate is fortuitous.
- A bound on the number of monotone Q-cohomologies: $\begin{array}{c|c} \# \text{ monotones} \\ \text{at finite } N \\ & \uparrow \\ \text{trace relations} \end{array} < \begin{array}{c} \# \text{ monotones} \\ \text{at infinite } N \\ & \uparrow \\ \end{array} = \begin{array}{c} \# \text{ BPS multi} \\ \text{particle states} \\ \text{Entropy of gas of free particles} \end{array} < \begin{array}{c} \# \text{ all multi} \\ \text{particle states} \\ & \sim e^{E^{\frac{9}{10}}} \sim e^{N^{\frac{9}{5}}} \\ & \uparrow \\ & \text{BH energy } E \sim N^{2} \end{array}$

• The growth of the total number of all BPS states can be estimated by the superconformal index [CCMM, CKKN, BM '18].

(# monotones) + (# fortuitous) = (# all BPS) $\sim e^{N^2}$

More on Fortuitous Cohomologies and Black Holes

Near-BPS States Above a Fortuitous State

- Small 't Hooft coupling λ and N

- O: representative of the previous fortuitous cohomology in SU(2) SYM. - $\mathcal{H}_{BH} = \{O + QO'\}$ for QO' with the same J_i , q_i , and classical E as O. - Diagonalize the one-loop $\Delta_{1-\text{loop}} = 2\{Q, Q^{\dagger}\}$. (ground state: O_{BH})

- Large 't Hooft coupling λ and N
 - JT sugra on the near-horizon AdS_2
 - a gap of order N^{-2} above the BPS states.

[Boruch-Heydeman-Iliesiu-Turiaci '22] [Stanford-Witten'17]

- What is the bulk dual of an individual fortuitous BPS state? What is a typical black hole microstate?
 - Construct fortuitous Q-cohomology at larger N (so far only N = 2, 3, 4) - $N \gtrsim 6$ maybe enough as S/N^2 from SCI already shows convergence at $N \sim 6$ - A proposal: The bulk dual of a fortuitous BPS state is a coupled system of Dbranes in a supergravity background at strong 't Hooft coupling.
- Generalizations: supercharge cohomology in D1-D5 CFTs [cc-Lin-Zhang WIP], 4d N=2 SCFTs [cc-Choi-Dong-Yan WIP], BMN matrix quantum mechanics, ...
- There is much more to be learned about black holes from supercharge cohomology!

Future Direction

Thank you