Constraints on the Species Scale and the Spectrum of States in Quantum Gravity

Max Wiesner Harvard University

Based on:

2310.07213, 2305.07701, 2303.13580, 2212.06841

with Damian van de Heisteeg, Cumrun Vafa, David H. Wu

- and -

2405.00083

with Alek Bedroya, Rashmish K. Mishra

Strings 2024 June 3rd, 2024

Introduction: Quantum Gravity Cutoff/Species Scale

• General expectation: Energy scale at which quantum gravitational effects become relevant

 $M_{\rm pl} \sim 10^{19} \, {\rm GeV}$

• Question: What is the actual Quantum Gravity Cutoff in a theory of gravity and is it *always* given by M_{pl} ?

Introduction: Quantum Gravity Cutoff/Species Scale

• General expectation: Energy scale at which quantum gravitational effects become relevant

 $M_{\rm pl} \sim 10^{19} \, {\rm GeV}$

- Question: What is the actual Quantum Gravity Cutoff in a theory of gravity and is it *always* given by M_{pl} ?
- In the presence of large number of *light species* of states
 → Quantum Gravity Cutoff parametrically below Planck scale

"Species Scale": [Dvali '07]

$$\frac{\Lambda_s}{M_{\rm pl}} = \frac{1}{N_{\rm light}^{1/(d-2)}} \ll 1$$

1

Introduction: Quantum Gravity Cutoff/Species Scale

• General expectation: Energy scale at which quantum gravitational effects become relevant

 $M_{\rm pl} \sim 10^{19} \, {\rm GeV}$

- Question: What is the actual Quantum Gravity Cutoff in a theory of gravity and is it *always* given by M_{pl} ?
- In the presence of large number of *light species* of states
 → Quantum Gravity Cutoff parametrically below Planck scale

"Species Scale": [Dvali '07]

$$\frac{\Lambda_s}{M_{\rm pl}} = \frac{1}{N_{\rm light}^{1/(d-2)}} \ll 1$$

► In asymptotic limits
$$N_{\text{light}} \to \infty$$

 $\Leftrightarrow \Lambda_s / M_{\text{pl}} \to 0$

• Tower *known* in explicit cases \rightarrow can compute Λ_s in these limits!

For reviews see [Palti '19; van Beest, Calderon-Infante, Mirfendereski, Valenzuela '21 Agmon, Bedroya, Kang, Vafa '22]

Recent works on species scale: [(Calderon-Infante), Castellano, Herraez, Ibanez '22,'23; Melotti, Marchesano '22; v.d. Heisteeg, Vafa, MW, Wu '22,'23; Cribiori, Lust, (Staudt) '22,'23; Cribiori, Lust, Montella '23; Castellano, Ruiz, Valenzuela '23; Calderon-Infante, Delgado, Uranga '23; Basile, Lust, Montella '23; Cota, Mininno, Weigand, MW '22,'23; Basile, Cribiori, Lust, Montella '24; Bedroya, Vafa, Wu '24; Bedroya, Mishra, MW '24; Aoufia, Basile, Leone '24] 1

Max Wiesner

Constraints on the Species Scale and the Spectrum of States in QG

Strings 2024

06/03/2024

$\Lambda_{\!\scriptscriptstyle S}$ without counting light states

- **Question:** How do we compute the QG cutoff/species scale away from asymptotic limit?
 - Would need to compute light spectrum at any point in field space...
 - Computation of exact spectrum at strong coupling difficult
 - \rightarrow need different way to compute Λ_s

$\Lambda_{\!\scriptscriptstyle S}$ without counting light states

- Question: How do we compute the QG cutoff/species scale away from asymptotic limit?
 - Would need to compute light spectrum at any point in field space...
 - Computation of exact spectrum at strong coupling difficult
 - \rightarrow need different way to compute Λ_s

Strings 2024

 Proposal: QG cutoff captured by gravitational higher-derivative corrections to Einstein-Hilbert action. [v.d. Heisteeg, Vafa, MW, (Wu) '23]

$$S_{\text{corr.}} = \frac{M_{\text{pl}}^{d-2}}{2} \int d^d x \sqrt{-g} \left(\mathscr{R} + \frac{1}{2} (\partial \phi)^2 + \dots + \sum_{n=1}^{\infty} a_n(\phi) \frac{\mathscr{O}_{2n+2}(\mathscr{R}, \partial)}{M_{\text{pl}}^{2n}} \right)$$

Scalar fields

06/03/2024

$\Lambda_{\rm S}$ without counting light states

- Question: How do we compute the QG cutoff/species scale away from asymptotic limit?
 - Would need to compute light spectrum at any point in field space...
 - Computation of exact spectrum at strong coupling difficult
 - \rightarrow need different way to compute Λ_s

$$S_{\text{corr.}} = \frac{M_{\text{pl}}^{d-2}}{2} \int d^d x \sqrt{-g} \left(\mathscr{R} + \frac{1}{2} (\partial \phi)^2 + \dots + \sum_{n=1}^{\infty} a_n(\phi) \frac{\mathscr{O}_{2n+2}(\mathscr{R}, \partial)}{M_{\text{pl}}^{2n}} \right)$$

Scalar fields

• Wilson coefficients of higher-derivative terms give species scale:

 $N_{\text{light}} \rightarrow \infty$ $N_{\text{light}} \rightarrow \infty$ $\Lambda_s \rightarrow 0$ $\Lambda_s \to 0$ $\Lambda_{\rm c}$

 $\Lambda_{\rm c}(\psi)$

- What is the physical meaning of the scale suppressing the higher-derivative corrections?
- Compare to Field Theory (e.g. electrodynamics in *d* dimensions):
 - \rightarrow higher-derivative corrections sensitive to particles of mass *m* that have been integrated out.

- What is the physical meaning of the scale suppressing the higher-derivative corrections?
- Compare to Field Theory (e.g. electrodynamics in *d* dimensions):
 - \rightarrow higher-derivative corrections sensitive to particles of mass *m* that have been integrated out.
- Analogue terms in gravity should be:

- What is the physical meaning of the scale suppressing the higher-derivative corrections?
- Compare to Field Theory (e.g. electrodynamics in *d* dimensions):
 - \rightarrow higher-derivative corrections sensitive to particles of mass *m* that have been integrated out.
- Analogue terms in gravity should be:
- But: in gravity cannot "integrate-in" additional states \rightarrow e.g. black holes are strongly coupled

Strings 2024

06/03/2024

- What is the physical meaning of the scale suppressing the higher-derivative corrections?
- Compare to Field Theory (e.g. electrodynamics in *d* dimensions):
 - \rightarrow higher-derivative corrections sensitive to particles of mass *m* that have been integrated out.
- Analogue terms in gravity should be:
- But: in gravity cannot "integrate-in" additional states \rightarrow e.g. black holes are strongly coupled
- Still: higher-derivative corrections encode imprint of "minimal black hole": → cf. original motiviation for species scale in [Dvali '07]

see also [Cribiori, Lüst, Staudt '22; Calderon-Infante, Delgado, Uranga '23]

Strings 2024

- Minimal black hole = smallest black hole describable by some effective field theory $\rightarrow \max M_{\min}$ and radius $r_H^{\min} = \Lambda_{\min}^{-1}$ (EFT cutoff) (in general $\Lambda_{\min} \neq M_{\min}$)
- Consider 2 → 2 scattering amplitudes and match higher-derivative expansion of action with contribution from minimal black hole!

06/03/2024

 ▶ Result: minimal black hole contribution to 2 → 2 scattering amplitudes can only be reproduced by higher-derivative corrections of the form

$$\mathscr{L}_{\rm corr} \supset \hat{a}_n \frac{M_{\rm pl,d}^{d-2}}{\Lambda_{\rm min}^{2n}} \mathscr{R} \square^{n-1} \mathscr{R} \implies \Lambda_s = \Lambda_{\rm min} = (r_H^{\rm min})^{-1} \qquad \text{Species Scale = Scale} \\ \text{set by minimal BH}$$

Max Wiesner Constraints on the Species Scale and the Spectrum of States in QG

 ▶ Result: minimal black hole contribution to 2 → 2 scattering amplitudes can only be reproduced by higher-derivative corrections of the form

$$\mathscr{L}_{\rm corr} \supset \hat{a}_n \frac{M_{\rm pl,d}^{d-2}}{\Lambda_{\rm min}^{2n}} \mathscr{R} \square^{n-1} \mathscr{R} \implies \Lambda_s = \Lambda_{\rm min} = (r_H^{\rm min})^{-1} \qquad \text{Species Scale = Scale} \\ \text{set by minimal BH}$$

- At center of mass energies $E \gg M_{\min}$ and *impact parameters* $b \ll \Lambda_{\min}^{-1}$ scattering process involves black hole formation/evaporation
 - \rightarrow amplitude is **exponentially suppressed** by black hole entropy

 ▶ Result: minimal black hole contribution to 2 → 2 scattering amplitudes can only be reproduced by higher-derivative corrections of the form

$$\mathscr{L}_{\rm corr} \supset \hat{a}_n \frac{M_{\rm pl,d}^{d-2}}{\Lambda_{\rm min}^{2n}} \mathscr{R} \square^{n-1} \mathscr{R} \implies \Lambda_s = \Lambda_{\rm min} = (r_H^{\rm min})^{-1} \qquad \text{Species Scale = Scale} \\ \text{set by minimal BH}$$

- At center of mass energies E ≫ M_{min} and *impact parameters* b ≪ Λ⁻¹_{min} scattering process involves black hole formation/evaporation
 → amplitude is exponentially suppressed by black hole entropy
- At fixed angle and large energies black hole contribution still suppressed, but leaves a phase factor: $\sim \exp(2\sqrt{t} r_H(E))$ [Giddings, Srednicki '07] \rightarrow becomes exponentially large upon continuation to unphysical regime $(t \gg 0)$ $\mathscr{A} \sim \exp(2r_H(E)\sqrt{t})$ for $t \gg 0$ Λ_{\min}

06/03/2024

 ▶ Result: minimal black hole contribution to 2 → 2 scattering amplitudes can only be reproduced by higher-derivative corrections of the form

$$\mathscr{L}_{\rm corr} \supset \hat{a}_n \frac{M_{\rm pl,d}^{d-2}}{\Lambda_{\rm min}^{2n}} \mathscr{R} \square^{n-1} \mathscr{R} \implies \Lambda_s = \Lambda_{\rm min} = (r_H^{\rm min})^{-1} \qquad \text{Species Scale = Scale} \\ \text{set by minimal BH}$$

- At center of mass energies E ≫ M_{min} and *impact parameters* b ≪ Λ⁻¹_{min} scattering process involves black hole formation/evaporation
 → amplitude is exponentially suppressed by black hole entropy
- At fixed angle and large energies black hole contribution still suppressed, but leaves a phase factor: $\sim \exp(2\sqrt{t} r_H(E))$ [Giddings, Srednicki '07] \rightarrow becomes exponentially large upon continuation to unphysical regime $(t \gg 0)$ $\mathscr{A} \sim \exp(2r_H(E)\sqrt{t})$ for $t \gg 0$ • Can argue: at energies $\Lambda_{\min} < E < M_{\min}$ replace r_H by $b_c(E) = \Lambda_{\min}^{-1} \mathscr{O}(E/\Lambda_{\min})$ [Bedroya, Mishra, MW '24] $\Rightarrow \mathscr{A} \sim \exp\left(\Lambda_{\min}^{-1}\sqrt{t} \times \mathscr{O}(\log E/\Lambda_{\min})\right)$

Strings 2024

[Bedroya, Mishra, MW '24]

- Match the amplitude at different energy scales:
 - Can argue: at energies $\Lambda_{\min} < E < M_{\min}$ replace r_H by $b_c(E) = \Lambda_{\min}^{-1} \mathcal{O}(E/\Lambda_{\min})$

$$\implies \mathscr{A} \sim \exp\left(\Lambda_{\min}^{-1}\sqrt{t} \times \mathcal{O}(\log E/\Lambda_{\min})\right)$$

 Λ_{\min}

 M_{\min}

E

- Match the amplitude at different energy scales:
 - Can argue: at energies $\Lambda_{\min} < E < M_{\min}$ replace r_H by $b_c(E) = \Lambda_{\min}^{-1} \mathcal{O}(E/\Lambda_{\min})$

$$\implies \mathscr{A} \sim \exp\left(\Lambda_{\min}^{-1}\sqrt{t} \times \mathcal{O}(\log E/\Lambda_{\min})\right)$$

- Match this amplitude with higher-derivative expansion at $E \sim \Lambda_{\min}$.
- To reproduce exponential behavior of \mathscr{A} for $t \gg 0$ need:

$$\mathscr{L}_{\text{eff}} \supset M_{\text{pl}}^{d-2} \frac{\hat{a}_n}{\Lambda_{\min}^{2n}} \mathscr{R} \square^{n-1} \mathscr{R} \quad \text{with} \quad \hat{a}_n \sim \frac{1}{(2n)!(n-1)!}$$

06/03/2024

 M_{\min}

 Λ_{\min}

- Match the amplitude at different energy scales:
 - Can argue: at energies $\Lambda_{\min} < E < M_{\min}$ replace r_H by $b_c(E) = \Lambda_{\min}^{-1} \mathcal{O}(E/\Lambda_{\min})$

$$\implies \mathscr{A} \sim \exp\left(\Lambda_{\min}^{-1}\sqrt{t} \times \mathcal{O}(\log E/\Lambda_{\min})\right)$$

- Match this amplitude with higher-derivative expansion at $E \sim \Lambda_{\min}$.
- To reproduce exponential behavior of \mathscr{A} for $t \gg 0$ need:

$$\mathscr{L}_{\text{eff}} \supset M_{\text{pl}}^{d-2} \frac{\hat{a}_n}{\Lambda_{\min}^{2n}} \mathscr{R} \square^{n-1} \mathscr{R} \quad \text{with} \quad \hat{a}_n \sim \frac{1}{(2n)!(n-1)!}$$

• Compare to species scale definition:

$$\mathscr{L}_{\mathrm{corr}}^{\mathrm{grav}} \supset \hat{a}_n \frac{M_{\mathrm{pl},\mathrm{d}}^{d-2}}{\Lambda_s^{2n}} \mathscr{R} \square^{n-1} \mathscr{R}$$

Upshot: $\Lambda_s = \Lambda_{\min} \rightarrow$ the QG cutoff corresponds to the radius of the smallest black hole in the theory!

4

 M_{\min}

 Λ_{\min}

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Consider higher-derivative corrections to effective action, e.g.

$$S = \int d^d x \sqrt{-g} \left[\frac{M_{\rm pl}^{d-2}}{2} \left(R + \frac{1}{2} (\partial \phi)^2 + a_2(\phi) R^2 + a_3(\phi) R^3 + a_4(\phi) R^4 + \dots \right) \right]$$

• Wilson coefficients encode field dependence of scale

 $\Lambda_s(\phi) \sim \frac{M_{\rm pl}}{a_n(\phi)^{\frac{1}{2n}}}$

Max Wiesner Constraints on the Species Scale and the Spectrum of States in QG

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Consider higher-derivative corrections to effective action, e.g.

$$S = \int d^d x \sqrt{-g} \left[\frac{M_{\rm pl}^{d-2}}{2} \left(R + \frac{1}{2} (\partial \phi)^2 + a_2(\phi) R^2 + a_3(\phi) R^3 + a_4(\phi) R^4 + \dots \right) \right]$$

• Wilson coefficients encode field dependence of scale

$$\Lambda_s(\phi) \sim \frac{M_{\rm pl}}{a_n(\phi)^{\frac{1}{2n}}}$$

• Strategy: Focus on terms that can be computed explicitly for any value of ϕ

 \rightarrow e.g. BPS couplings in supersymmetric theories

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Consider higher-derivative corrections to effective action, e.g.

$$S = \int d^d x \sqrt{-g} \left[\frac{M_{\rm pl}^{d-2}}{2} \left(R + \frac{1}{2} (\partial \phi)^2 + a_2(\phi) R^2 + a_3(\phi) R^3 + a_4(\phi) R^4 + \dots \right) \right]$$

• Wilson coefficients encode field dependence of scale

$$\Lambda_s(\phi) \sim \frac{M_{\rm pl}}{a_n(\phi)^{\frac{1}{2n}}}$$

• Strategy: Focus on terms that can be computed explicitly for any value of ϕ

- \rightarrow e.g. BPS couplings in supersymmetric theories
- $t_8 t_8 R^4$ -coupling in theories with maximal supersymmetry.
- R^2 -term in vector/tensor sector of theories with 8 supercharges in 6d/5d/4d.

5

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Consider higher-derivative corrections to effective action, e.g.

$$S = \int d^d x \sqrt{-g} \left[\frac{M_{\rm pl}^{d-2}}{2} \left(R + \frac{1}{2} (\partial \phi)^2 + a_2(\phi) R^2 + a_3(\phi) R^3 + a_4(\phi) R^4 + \dots \right) \right]$$

• Wilson coefficients encode field dependence of scale

$$\Lambda_s(\phi) \sim \frac{M_{\rm pl}}{a_n(\phi)^{\frac{1}{2n}}}$$

• Strategy: Focus on terms that can be computed explicitly for any value of ϕ

- \rightarrow e.g. BPS couplings in supersymmetric theories
- $t_8 t_8 R^4$ -coupling in theories with maximal supersymmetry.
- R^2 -term in vector/tensor sector of theories with 8 supercharges in 6d/5d/4d.
- Obtain an **upper bound** for the species scale *everywhere* in moduli space!

[v.d. Heisteeg, Vafa, MW, Wu '23]

- As an example consider 10d Type IIA string theory \rightarrow single modulus $\hat{=}$ string coupling $\phi = \log(g_s)$:
- First **non-vanishing** term of the higher-derivative corrections is $t_8 t_8 R^4$ -coupling.

$$S_{10,R^4} = \frac{M_{\rm pl}^2}{2} \int d^{10}x \sqrt{-g} \, a_4(\phi) \, t_8 t_8 R^4 \qquad \text{[Green, Vanhove '97]}$$

[v.d. Heisteeg, Vafa, MW, Wu '23]

- As an example consider 10d Type IIA string theory \rightarrow single modulus $\hat{=}$ string coupling $\phi = \log(g_s)$:
- First **non-vanishing** term of the higher-derivative corrections is $t_8 t_8 R^4$ -coupling.

$$S_{10,R^4} = \frac{M_{\rm pl}^2}{2} \int d^{10}x \sqrt{-g} \ a_4(\phi) \ t_8 t_8 R^4 \qquad \text{[Green, Vanhove '97]}$$

• Coefficient $a_4(\phi)$ is one-loop exact \rightarrow tree-level + one-loop contributions

[v.d. Heisteeg, Vafa, MW, Wu '23]

- As an example consider 10d Type IIA string theory \rightarrow single modulus $\hat{=}$ string coupling $\phi = \log(g_s)$:
- First **non-vanishing** term of the higher-derivative corrections is $t_8 t_8 R^4$ -coupling.

$$S_{10,R^4} = \frac{M_{\rm pl}^2}{2} \int d^{10}x \sqrt{-g} \, a_4(\phi) \, t_8 t_8 R^4 \qquad \text{[Green, Vanhove '97]}$$

• Coefficient $a_4(\phi)$ is one-loop exact \rightarrow tree-level + one-loop contributions

$$a_4(\phi) = \hat{a}_4\left(\frac{3 \cdot 2^{3/4}\zeta(3)}{\pi^{5/4}}e^{-3\phi/2} + (2\pi)^{3/4}e^{\phi/2}\right)$$

06/03/2024

[v.d. Heisteeg, Vafa, MW, Wu '23]

- As an example consider 10d Type IIA string theory \rightarrow single modulus $\hat{=}$ string coupling $\phi = \log(g_s)$:
- First **non-vanishing** term of the higher-derivative corrections is $t_8 t_8 R^4$ -coupling.

$$S_{10,R^4} = \frac{M_{\rm pl}^2}{2} \int d^{10}x \sqrt{-g} \, a_4(\phi) \, t_8 t_8 R^4 \qquad \text{[Green, Vanhove '97]}$$

• Coefficient $a_4(\phi)$ is one-loop exact \rightarrow tree-level + one-loop contributions

$$a_4(\phi) = \hat{a}_4\left(\frac{3 \cdot 2^{3/4}\zeta(3)}{\pi^{5/4}}e^{-3\phi/2} + (2\pi)^{3/4}e^{\phi/2}\right)$$

• For the species scale this means:

6

 $M_{\rm pl}$

1.2

0.8

0.6

0.4

0.2

0

φ

-1

-2

[v.d. Heisteeg, Vafa, MW, Wu '23]

Strings 2024

06/03/2024

- As an example consider 10d Type IIA string theory \rightarrow single modulus $\hat{=}$ string coupling $\phi = \log(g_s)$:
- First **non-vanishing** term of the higher-derivative corrections is $t_8 t_8 R^4$ -coupling.

$$S_{10,R^4} = \frac{M_{\rm pl}^2}{2} \int d^{10}x \sqrt{-g} \, a_4(\phi) \, t_8 t_8 R^4 \qquad \text{[Green, Vanhove '97]}$$

• Coefficient $a_4(\phi)$ is one-loop exact \rightarrow tree-level + one-loop contributions

$$a_4(\phi) = \hat{a}_4\left(\frac{3 \cdot 2^{3/4} \zeta(3)}{\pi^{5/4}} e^{-3\phi/2} + (2\pi)^{3/4} e^{\phi/2}\right)$$

[v.d. Heisteeg, Vafa, MW, Wu '23]

Strings 2024

06/03/2024

- As an example consider 10d Type IIA string theory \rightarrow single modulus $\hat{=}$ string coupling $\phi = \log(g_s)$:
- First **non-vanishing** term of the higher-derivative corrections is $t_8 t_8 R^4$ -coupling.

$$S_{10,R^4} = \frac{M_{\rm pl}^2}{2} \int d^{10}x \sqrt{-g} \, a_4(\phi) \, t_8 t_8 R^4 \qquad \text{[Green, Vanhove '97]}$$

• Coefficient $a_4(\phi)$ is one-loop exact \rightarrow tree-level + one-loop contributions

Max Wiesner

$$a_4(\phi) = \hat{a}_4\left(\frac{3 \cdot 2^{3/4} \zeta(3)}{\pi^{5/4}} e^{-3\phi/2} + (2\pi)^{3/4} e^{\phi/2}\right)$$

• For the species scale this means: $\Lambda_s \le \frac{1}{(2\pi)^{1/8}} \left(\frac{3\zeta(3)}{\pi^2} e^{-3\phi/2} + e^{\phi/2} \right)$ 0.8 0.6 • For $\phi \to -\infty$: tree-level dominates \to species scale agrees with expectation from perturbative IIA string theory 0.4 0.2 • For $\phi \to +\infty$: one-loop dominates \to species scale agrees -2 -1 0 with expectation from 11d M-theory φ 6 Constraints on the Species Scale and the Spectrum of States in QG

The Desert of the Moduli Space

[v.d. Heisteeg, Vafa, MW, Wu '23]

- Can repeat this in a large class of examples:
 - \rightarrow 32 supercharges; e.g. *M*-theory on T^n
 - \rightarrow 16 supercharges; e.g. *Heterotic/Type I on* T^n
 - \rightarrow 8 supercharges; e.g. F-/M-/Type II on Calabi-Yau threefolds

```
[v.d. Heisteeg, Vafa, MW, Wu '22]
```

 Always find higher-derivative corrections that capture dependence of species scale on (part of) the moduli everywhere in moduli space

see also [Cribiori, Lüst '23; Castellano, Herraez, Ibanez '23]

7

The Desert of the Moduli Space

[v.d. Heisteeg, Vafa, MW, Wu'23]

- Can repeat this in a large class of examples:
 - \rightarrow 32 supercharges; e.g. *M*-theory on T^n
 - \rightarrow 16 supercharges; e.g. Heterotic/Type I on T^n
 - \rightarrow 8 supercharges; e.g. F-/M-/Type II on Calabi-Yau threefolds

• Always find higher-derivative corrections that capture dependence of species scale on (part of) the moduli everywhere in moduli space

[v.d. Heisteeg, Vafa, MW, Wu '22]

• Can determine the "Desert Point" in moduli space where species scale is maximized \leftrightarrow least amount

Max Wiesner

Constraints on the Species Scale and the Spectrum of States in QG

Strings 2024

7

see also [Cribiori, Lüst '23; Castellano, Herraez, Ibanez '23]

The Desert of the Moduli Space

- Can repeat this in a large class of examples:
 - \rightarrow 32 supercharges; e.g. *M*-theory on T^n

moduli everywhere in moduli space

- \rightarrow 16 supercharges; e.g. Heterotic/Type I on T^n
- \rightarrow 8 supercharges; e.g. F-/M-/Type II on Calabi-Yau threefolds

[v.d. Heisteeg, Vafa, MW, Wu '22]

• Always find higher-derivative corrections that capture dependence of species scale on (part of) the

Example	$\Lambda_s^{ m max}/M_{ m pl}$
10d IIA	0.755
10d IIB	0.756
M-theory on T^2	0.513
M-theory on T^3	0.504
10d Heterotic $E_8 \times E_8$	0.823
10d Heterotic SO(32)	0.822
F-theory on $\mathbb{F}_{n\leq 2}$	$2^{-3/4}$
M-theory on $X_{2,86}$	0.490

see also [Cribiori, Lüst '23; Castellano, Herraez, Ibanez '23]

06/03/2024

Strings 2024

Constraints on the Species Scale and the Spectrum of States in QG

Max Wiesner

Bound on the Slope of Λ_s

• Question: How fast can Λ_s vary as a function of the scalar fields ϕ ? [v.d. Heisteeg, Vafa, MW '23]

Constraints on the Species Scale and the Spectrum of States in QG Max Wiesner

8

Bound on the Slope of Λ_{s}

• Question: How fast can Λ_s vary as a function of the scalar fields ϕ ?

[v.d. Heisteeg, Vafa, MW '23]

• Consider higher-derivative expansion:

- Integrate out high-energy modes of $\phi = \phi_0 + \delta \phi$
 - \rightarrow generate new operator \tilde{O}_{m+n} with coefficient depending on $\nabla \Lambda_s!$

Bound on the Slope of $\Lambda_{\!\scriptscriptstyle S}$

• Question: How fast can Λ_s vary as a function of the scalar fields ϕ ? [v.d.

[v.d. Heisteeg, Vafa, MW '23]

- ► Consider higher-derivative expansion: $S_{\text{grav}} = \int d^d x \sqrt{-g} \left[\frac{M_{\text{pl}}^{d-2}}{2} \left(R + \sum_n \frac{\mathcal{O}_n(R)}{\Lambda_s^{n-2}(\phi)} + \dots \right) \right]$ $\Rightarrow \text{ Integrate out high-energy modes of } \phi = \phi_0 + \delta \phi$ $\Rightarrow \text{ generate new operator } \tilde{O}_{m+n} \text{ with coefficient depending on } \nabla \Lambda_s!$ $\Rightarrow \text{ Consistency of effective higher-derivative expansion leads:} \left| \frac{\nabla \Lambda_s(\phi_0)}{\Lambda_s(\phi_0)} \right|^2 \leq \frac{c}{M_{\text{pl}}^{(d-2)}}, \ c \sim \mathcal{O}(1)$
 - Bound valid everywhere in field space \rightarrow what is c?

Bound on the Slope of $\Lambda_{\!\scriptscriptstyle S}$

• Question: How fast can Λ_s vary as a function of the scalar fields ϕ ? [v.d.

[v.d. Heisteeg, Vafa, MW '23]

0.06

0.04

0.02

Strings 2024

 $\phi = \log(g_s)$

-1

-2

06/03/2024

8

Bound on the Slope of $\Lambda_{\!\scriptscriptstyle S}$

• Question: How fast can Λ_s vary as a function of the scalar fields ϕ ? [v.d

[v.d. Heisteeg, Vafa, MW '23]

-2

-1

 $\phi = \log(g_s)$

Strings 2024

[v.d. Heisteeg, Vafa, MW, Wu '23]

Max Wiesner Constra

Constraints on the Species Scale and the Spectrum of States in QG

06/03/2024

8
[v.d. Heisteeg, Vafa, MW, Wu '23]

• Species Scale varies most rapidly in asymptotic limits

 \rightarrow bound $|\nabla \Lambda_s / \Lambda_s|^2 \leq \frac{1}{d-2}$ (in Planck units) can be saturated in these limits!

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Species Scale varies most rapidly in asymptotic limits

 \rightarrow bound $|\nabla \Lambda_s / \Lambda_s|^2 \leq \frac{1}{d-2}$ (in Planck units) can be saturated in these limits!

• Possibilities for asymptotic limits constrained by **Emergent String Conjecture** [Lee, Lerche, Weigand '19]

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Species Scale varies most rapidly in asymptotic limits

 \rightarrow bound $|\nabla \Lambda_s / \Lambda_s|^2 \leq \frac{1}{d-2}$ (in Planck units) can be saturated in these limits!

• Possibilities for asymptotic limits constrained by **Emergent String Conjecture** [Lee,

[Lee, Lerche, Weigand '19]

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

- Nature of tower determines properties of species scale:
 - KK tower \rightarrow species scale is higher-dim. Planck scale
 - String tower \rightarrow species scale is string scale

[v.d. Heisteeg, Vafa, MW, Wu '23]

• Species Scale varies most rapidly in asymptotic limits

 \rightarrow bound $|\nabla \Lambda_s / \Lambda_s|^2 \leq \frac{1}{d-2}$ (in Planck units) can be saturated in these limits!

• Possibilities for asymptotic limits constrained by **Emergent String Conjecture** [Lee,

[Lee, Lerche, Weigand '19]

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

- Nature of tower determines properties of species scale:
 - KK tower \rightarrow species scale is higher-dim. Planck scale

Strings 2024

 $\left| \frac{\nabla \Lambda_s}{\Lambda_s} \right| \leq \frac{1}{d-2}$

• Emergent string limit gives most extreme variation of Λ_s

• String tower \rightarrow species scale is string scale

---> Emergent String Conjecture gives sharp bound on slope of species scale!

Max Wiesner

Constraints on the Species Scale and the Spectrum of States in QG

Species Scale – Overview

 Species Scale can be computed from higher-derivative corrections to Einstein-Hilbert action (→ corresponding to scale of minimal black hole)

$$S_{\text{corr.}} = \frac{M_{\text{pl}}^{d-2}}{2} \int d^d x \sqrt{-g} \left(\mathscr{R} + \frac{1}{2} (\partial \phi)^2 + \ldots + \sum_{n=1}^{\infty} a_n(\phi) \frac{\mathscr{O}_{2n+2}(\mathscr{R}, \partial)}{M_{\text{pl}}^{2n}} \right) \longrightarrow \Lambda_s(\phi) \sim \frac{M_{\text{pl}}}{a_n(\phi)^{\frac{1}{2n}}}$$

• In explicit examples can give an *upper bound* on Λ_s from terms protected e.g. by supersymmetry \rightarrow bound on the maximally possible value for QG cutoff (Desert point)

$$\Lambda_s^{\max} < M_{\rm pl}$$

- Slope of species scale bounded from above everywhere in moduli space.
- Bound saturated in *asymptotic* limits where Emergent String Conjecture predicts *universal* bound:

$$\frac{\nabla \Lambda_s}{\Lambda_s} \bigg|^2 \le \frac{M_{\rm pl}^{2-d}}{d-2}$$

• Emergent string conjecture states that asymptotic regimes where $\Lambda_s \ll M_{pl}$ have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

• Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [**Lee, Lerche, Weigand** '18,**'19**,'21; Baume, Marchesano, MW '19; Xu '20; Klaewer, Lee, Weigand, MW '20, Alvarez-Garcia, Klaewer, Weigand '21; MW '22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24; Alvarez-Garcia, Lee, Weigand '23]

• Emergent string conjecture states that asymptotic regimes where $\Lambda_s \ll M_{pl}$ have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

• Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [**Lee, Lerche, Weigand** '18,**'19**,'21; Baume, Marchesano, MW '19; Xu '20; Klaewer, Lee, Weigand, MW '20, Alvarez-Garcia, Klaewer, Weigand '21; MW '22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24; Alvarez-Garcia, Lee, Weigand '23]

• Question: Can we argue for universal properties of limits where $\Lambda_s \ll M_{\rm pl}$ without directly

using string theory?

• Emergent string conjecture states that asymptotic regimes where $\Lambda_s \ll M_{pl}$ have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

• Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [**Lee, Lerche, Weigand** '18,**'19**,'21; Baume, Marchesano, MW '19; Xu '20; Klaewer, Lee, Weigand, MW '20, Alvarez-Garcia, Klaewer, Weigand '21; MW '22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24; Alvarez-Garcia, Lee, Weigand '23]

• Question: Can we argue for universal properties of limits where $\Lambda_s \ll M_{pl}$ without directly using string theory?

• Goal: Show that in any gravitational weak-coupling limits where $\Lambda_s \ll M_{pl}$ the lightest tower of states is

[Bedroya, Mishra, MW '24] • A KK-tower associated to a decompactification to a higher dimensional theory,

-OR-

• A tower for which the density of one-particle states grows exponential in energy $\rho(E) \propto \exp(E/\Lambda_s)$

10

• Emergent string conjecture states that asymptotic regimes where $\Lambda_s \ll M_{pl}$ have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to *D* > *d* dimensions -ORii) the tower of excitation of fundamental, perturbative string

• Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [**Lee, Lerche, Weigand** '18,**'19**,'21; Baume, Marchesano, MW '19; Xu '20; Klaewer, Lee, Weigand, MW '20, Alvarez-Garcia, Klaewer, Weigand '21; MW '22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24; Alvarez-Garcia, Lee, Weigand '23]

• Question: Can we argue for universal properties of limits where $\Lambda_s \ll M_{\rm pl}$ without directly

using string theory?

- Goal: Show that in any gravitational weak-coupling limits where $\Lambda_s \ll M_{pl}$ the lightest tower of states is
- [Bedroya, Mishra, MW '24] A KK-tower associated to a decompactification to a higher dimensional theory,

-OR-

• A tower for which the density of one-particle states grows exponential in

energy

 $\rho(E) \propto \exp(E/\Lambda_s)$

Hagedorn growth as for perturbative string!

see [Basile, Montella, Lüst '23] for complementary bottom-up approach to Emergent String Conjecture! 10

Strings 2024

One-Particle Density of States

- Central object for our analysis: density of one particle states ρ
- In limit Λ_s ≪ M_{pl} a good estimate for ρ(E) for E ≫ Λ_s is given in terms of high-energy 2 → 2 scattering amplitudes at fixed, small impact parameter:

 $-\log(\Lambda_s \rho(E)) \sim \log |\mathcal{A}_{2 \to 2}(E)|^2 + \mathcal{O}(\log(\Lambda_s/E))$

One-Particle Density of States

- Central object for our analysis: density of one particle states ρ
- In limit Λ_s ≪ M_{pl} a good estimate for ρ(E) for E ≫ Λ_s is given in terms of high-energy 2 → 2 scattering amplitudes at fixed, small impact parameter:

$$-\log(\Lambda_{s} \rho(E)) \sim \log |\mathscr{A}_{2 \to 2}(E)|^{2} + \mathcal{O}(\log(\Lambda_{s}/E))$$

• General expectation: $\rho(E) \sim \exp\left[\left(\frac{E}{\Lambda_{s}}\right)^{\alpha}\right]$ More precisely: $\log \rho(E) = \tilde{\mathcal{O}}\left[\left(\frac{E}{\Lambda_{s}}\right)^{\alpha}\right] \equiv \mathcal{O}\left[\left(\frac{E}{\Lambda_{s}}\right)^{\alpha} \cdot \log(E/\Lambda_{s})^{k}\right]$

- α is a piece-wise constant function on energy.
- Idea: Track *α* as a function of energy to infer properties of towers of states.

One-Particle Density of States

- Central object for our analysis: density of one particle states ρ
- In limit Λ_s ≪ M_{pl} a good estimate for ρ(E) for E ≫ Λ_s is given in terms of high-energy 2 → 2 scattering amplitudes at fixed, small impact parameter:

$$-\log(\Lambda_{s} \rho(E)) \sim \log |\mathcal{A}_{2 \to 2}(E)|^{2} + \mathcal{O}(\log(\Lambda_{s}/E))$$

• General expectation: $\rho(E) \sim \exp\left[\left(\frac{E}{\Lambda_{s}}\right)^{\alpha}\right]$ More precisely: $\log \rho(E) = \tilde{\mathcal{O}}\left[\left(\frac{E}{\Lambda_{s}}\right)^{\alpha}\right] = \mathcal{O}\left[\left(\frac{E}{\Lambda_{s}}\right)^{\alpha} \cdot \log(E/\Lambda_{s})^{k}\right]$

• α is a piece-wise constant function on energy.

• Idea: Track α as a function of energy to infer properties of towers of states.

E

 $\alpha < 1$ $\alpha = 1$

 Λ_s

Constraints on the Species Scale and the Spectrum of States in QG

 $\alpha > 1$

 $M_{\rm BH,min}$

06/03/2024

Strings 2024

- At very high energies the density of one-particle states is dominated by black hole microstates.
- Entropy of Schwarzschild black holes S = 1

$$S = \log \rho \sim \left(\frac{E}{M_{\rm pl}}\right)^{\frac{d-2}{d-3}} \Rightarrow \alpha > 1$$

• More generally: one-particle states are black hole microstates $\Leftrightarrow \alpha > 1$ [Bedroya, Mishra, MW '24]

 \rightarrow energy scale at which $\alpha \leq 1 \rightarrow \alpha > 1$ corresponds to mass of minimal black hole $M_{\rm BH,min}$.

• At very high energies the density of one-particle states is dominated by black hole microstates.

• More generally: one-particle states are black hole microstates $\Leftrightarrow \alpha > 1$ [Bedroya, Mishra, MW '24]

 \rightarrow energy scale at which $\alpha \leq 1 \rightarrow \alpha > 1$ corresponds to mass of minimal black hole $M_{\text{BH,min}}$.

• Minimal black hole does not need to be a *d*-dimensional Schwarzschild black hole!

[Bedroya, Vafa, Wu '24]

13

• At very high energies the density of one-particle states is dominated by black hole microstates.

• More generally: one-particle states are black hole microstates $\Leftrightarrow \alpha > 1$ [Bedroya, Mishra, MW '24]

 \rightarrow energy scale at which $\alpha \leq 1 \rightarrow \alpha > 1$ corresponds to mass of minimal black hole $M_{\text{BH,min}}$.

Minimal black hole does not need to be a d-dimensional Schwarzschild black hole!

[Bedroya, Vafa, Wu '24]

• Below certain energy scale: can exist black solution that is entropically favored over the *d*-dimensional Schwarzschild Black Hole.

 \rightarrow for horizons smaller than some $r_* \gtrsim \Lambda_s^{-1}$ have transition to other solution.

13

• At very high energies the density of one-particle states is dominated by black hole microstates.

• More generally: one-particle states are black hole microstates $\Leftrightarrow \alpha > 1$ [Bedroya, Mishra, MW '24]

 \rightarrow energy scale at which $\alpha \leq 1 \rightarrow \alpha > 1$ corresponds to mass of minimal black hole $M_{\text{BH,min}}$.

Minimal black hole does not need to be a d-dimensional Schwarzschild black hole!

[Bedroya, Vafa, Wu'24]

• Below certain energy scale: can exist black solution that is **entropically favored** over the *d*-dimensional Schwarzschild Black Hole.

 \rightarrow for horizons smaller than some $r_* \gtrsim \Lambda_s^{-1}$ have transition to other solution.

- Examples in String Theory:
 - 1. Gregory-Laflamme transition to higher-dimensional Schwarzschild black hole ($r_* = M_{\rm KK}^{-1}$) [Gregory, Laflamme '93]
 - 2. Horowitz-Polchinski transition for perturbative strings $(r_* = M_s^{-1})$ [Horowitz, Polchinski '97]

06/03/2024

Strings 2024

• At very high energies the density of one-particle states is dominated by black hole microstates.

• More generally: one-particle states are black hole microstates $\Leftrightarrow \alpha > 1$ [Bedroya, Mishra, MW '24]

 \rightarrow energy scale at which $\alpha \leq 1 \rightarrow \alpha > 1$ corresponds to mass of minimal black hole $M_{\text{BH,min}}$.

• Minimal black hole does not need to be a *d*-dimensional Schwarzschild black hole!

[Bedroya, Vafa, Wu'24]

• Below certain energy scale: can exist black solution that is **entropically favored** over the *d*-dimensional Schwarzschild Black Hole.

 \rightarrow for horizons smaller than some $r_* \gtrsim \Lambda_s^{-1}$ have transition to other solution.

• Scale $\Lambda_{\rm BH} \equiv r_*^{-1}$ related to scale of lightest tower in asymptotic regimes: $\Lambda_{\rm BH} \lesssim \Lambda_s \lesssim M_{\rm pl}$

06/03/2024

Strings 2024

Towers of lights States from Black Holes

- Question: What do I need to get a black hole that is entropically dominates over a *d*-dimensional Schwarzschild black hole?
- Consider a d-dimensional EFT of gravity in *asymptotically flat spacetime* with finitely many weakly coupled states.

Towers of lights States from Black Holes

- Question: What do I need to get a black hole that is entropically dominates over a *d*-dimensional Schwarzschild black hole?
- Consider a d-dimensional EFT of gravity in *asymptotically flat spacetime* with finitely many weakly coupled states.
- In asymptotically flat space can use Weak Energy Condition:
 - Consider spherically symmetric black hole: $ds^2 = -e^{2\nu(r)}dt^2 + e^{2\lambda(r)}dr^2 + r^2d\Omega_{d-2}^2$ such that $\lim_{r \to \infty} (1 - e^{2\nu(r)})r^{d-3} = \lim_{r \to \infty} (1 - e^{-2\lambda(r)})r^{d-3} = \frac{\kappa M}{4\pi}$
 - Weak Energy Condition $(T_0^0 \le 0)$ requires:

$$\frac{(d-3)}{2}\left(-1+e^{2\lambda}\right)+r\lambda'\geq 0$$

Strings 2024

• The boundary conditions imply $e^{2\lambda} \leq e^{2\lambda_{\text{Schwarzschild}}}$ for every r $\rightarrow r_H \leq r_H^{\text{Schwarzschild}} \rightarrow \text{no such black hole will have bigger entropy!}$

Towers of lights States from Black Holes

- Question: What do I need to get a black hole that is entropically dominates over a *d*-dimensional Schwarzschild black hole?
- Consider a d-dimensional EFT of gravity in *asymptotically flat spacetime* with finitely many weakly coupled states.
- In asymptotically flat space can use Weak Energy Condition:
 - Consider spherically symmetric black hole: $ds^2 = -e^{2\nu(r)}dt^2 + e^{2\lambda(r)}dr^2 + r^2d\Omega_{d-2}^2$ such that $\lim_{r \to \infty} (1 - e^{2\nu(r)})r^{d-3} = \lim_{r \to \infty} (1 - e^{-2\lambda(r)})r^{d-3} = \frac{\kappa M}{4\pi}$
 - Weak Energy Condition $(T_0^0 \le 0)$ requires: $\frac{(d-3)}{2}(-1+e^{2\lambda}) + r\lambda' \ge 0$
 - The boundary conditions imply $e^{2\lambda} \leq e^{2\lambda_{\text{Schwarzschild}}}$ for every $r \rightarrow r_H \leq r_H^{\text{Schwarzschild}} \rightarrow \text{no such black hole will have bigger entropy!}$
- To get entropically favored state need *infinitely* many additional states!

 \rightarrow Transition scale Λ_{BH} is *indeed* associated to mass scale of tower of states!

consistent with proposal in [Bedroya, Vafa, Wu '24]

Strings 2024

Max Wiesner

Constraints on the Species Scale and the Spectrum of States in QG

- Tower of States: Infinite family of states with mass $m_n = m_0 + f(n) \Delta m$
- What kind of towers of weakly coupled states can we get with mass scale $m_0 \ll \Lambda_s$?

- Tower of States: Infinite family of states with mass $m_n = m_0 + f(n) \Delta m$
- What kind of towers of weakly coupled states can we get with mass scale $m_0 \ll \Lambda_s$?
- Basic properties of species scale $\rightarrow \exists$ EFT with cutoff Λ_s
 - EFT described in terms of finitely many fundamental fields and defects \rightarrow collectively account for all states below Λ_s
 - Weakly coupled defect can give rise to tower of weakly coupled states if in closed configuration (e.g. upon compactification)

"Weakly coupled" brane: self-energy is negligible compared to its tension \rightarrow e.g. extrinsic curvature smaller than tension.

06/03/2024

Strings 2024

- Tower of States: Infinite family of states with mass $m_n = m_0 + f(n) \Delta m$
- What kind of towers of weakly coupled states can we get with mass scale $m_0 \ll \Lambda_s$?
- Basic properties of species scale $\rightarrow \exists$ EFT with cutoff Λ_s
 - EFT described in terms of finitely many fundamental fields and defects \rightarrow collectively account for all states below Λ_s
 - Weakly coupled defect can give rise to tower of weakly coupled states if in closed configuration (e.g. upon compactification)

"Weakly coupled" brane: self-energy is negligible compared to its tension \rightarrow e.g. extrinsic curvature smaller than tension.

▶ Result: Tension \mathcal{T} of weakly coupled p-branes ($p \ge 1$) bounded as $\mathcal{T} \gtrsim \Lambda_s^{p+1}$ [Bedroya, Mishra, MW '24]

- Obtained by considering contribution of these branes to scattering amplitude.
- Weakly-coupled defects cannot give tower of weakly coupled states with $m_0 \ll \Lambda_s$.

Constraints on the Species Scale and the Spectrum of States in QG

15

[Bedroya, Mishra, MW '24]

- What possibilities for weakly coupled towers with $m_0 \ll \Lambda_s$ are left?
- Consider EFT that is valid at Λ_s and take weak-coupling limit $\Lambda_s/M_{pl,d} \rightarrow 0$.
- Since EFT is valid at energies Λ, the partition function has to be finite if we put it on a thermal circle of circumference β ≥ Λ⁻¹ (fixed in units of Λ⁻¹).

16

[Bedroya, Mishra, MW '24]

- What possibilities for weakly coupled towers with $m_0 \ll \Lambda_s$ are left?
- Consider EFT that is valid at Λ_s and take weak-coupling limit $\Lambda_s/M_{pl,d} \rightarrow 0$.
- Since EFT is valid at energies Λ, the partition function has to be finite if we put it on a thermal circle of circumference β ≥ Λ⁻¹ (fixed in units of Λ⁻¹).
- Suppose we number of weakly coupled states with mass below Λ is N, then we have

$$\mathcal{Z}(\beta) \geq \int_0^{\Lambda} dm \ e^{-\beta m} \rho(m) \geq e^{-\beta \Lambda} \int_0^{\Lambda} dm \ \rho(m) = e^{-\beta \Lambda} N$$

[Bedroya, Mishra, MW '24]

Strings 2024

- What possibilities for weakly coupled towers with $m_0 \ll \Lambda_s$ are left?
- Consider EFT that is valid at Λ_s and take weak-coupling limit $\Lambda_s/M_{\rm pl,d} \to 0$.
- Since EFT is valid at energies Λ, the partition function has to be finite if we put it on a thermal circle of circumference β ≥ Λ⁻¹ (fixed in units of Λ⁻¹).
- Suppose we number of weakly coupled states with mass below Λ is N, then we have

$$\mathcal{Z}(\beta) \geq \int_0^{\Lambda} dm \ e^{-\beta m} \rho(m) \geq e^{-\beta \Lambda} \int_0^{\Lambda} dm \ \rho(m) = e^{-\beta \Lambda} N$$

- *N* needs to be finite! \rightarrow EFT valid at Λ_s has finitely many weakly coupled states.
- Only way to get states below Λ_s is by compactification of theory

\rightarrow Only possible tower of states with mass scale $m_0 \ll \Lambda_s$ are KK states.

- So far: considered the regimes $E \leq \Lambda_s$ and $E \geq \Lambda_s$ *(IR) (UV)*
 - Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

- So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ *(IR) (UV)*
- Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

- So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ *(IR) (UV)*
- Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

 \rightarrow can consider radiation in a box with energy $E=\Lambda_s$ and $T=\Lambda_s$

Strings 2024

[Bedroya, Mishra, MW '24]

- So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ *(IR) (UV)*
- Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

 \rightarrow can consider radiation in a box with energy $E = \Lambda_s$ and $T = \Lambda_s$

Strings 2024

[Bedroya, Mishra, MW '24]

- ► So far: considered the regimes $E \leq \Lambda_s$ and $E \gtrsim \Lambda_s$ (*IR*) (*UV*)
- Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

• Have $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s \longrightarrow$ need to consistently connect the regimes!

[Bedroya, Mishra, MW '24]

• So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ Λ_s *(IR)* (UV) Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$. Λ_{s} \rightarrow consider temperature diagram

 \rightarrow can consider radiation in a box with energy $E = \Lambda_s$ and $T = \Lambda_s$

• Have $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s \longrightarrow$ need to consistently connect the regimes!

• Consider density of multi-particle states $\log \Omega(E) = \widetilde{\mathcal{O}}((E/\Lambda_s)^{\alpha_\Omega}) \rightarrow T^{-1} = \frac{d \log \Omega}{dE}$

• Since $\alpha_{\Omega} > 1$ corresponds to black holes \rightarrow need $\alpha_{\Omega} \leq 1$ for energies $\Lambda_s \ll E \ll M_{\text{BH,min}}$.

17

[Bedroya, Mishra, MW '24]

- So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ *(IR)* (UV)
- Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

Strings 2024

- \rightarrow can consider radiation in a box with energy $E = \Lambda_s$ and $T = \Lambda_s$

• Have $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s \longrightarrow$ need to consistently connect the regimes!

- Consider density of multi-particle states $\log \Omega(E) = \widetilde{\mathcal{O}}((E/\Lambda_s)^{\alpha_\Omega}) \rightarrow T^{-1} = \frac{d \log \Omega}{dE}$
- Since $\alpha_{\Omega} > 1$ corresponds to black holes \rightarrow need $\alpha_{\Omega} \leq 1$ for energies $\Lambda_s \ll E \ll M_{\text{BH,min}}$.
- Only possibility to achieve $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s$ is then $\alpha_{\Omega} = 1$.

[Bedroya, Mishra, MW '24]

- So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ *(IR)* (UV)
- Have EFT description valid up to Λ_s and black hole description above $M_{\rm BH,min}$.
 - \rightarrow consider temperature diagram

- \rightarrow can consider radiation in a box with energy $E = \Lambda_s$ and $T = \Lambda_s$

• Have $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s \longrightarrow$ need to consistently connect the regimes!

- Consider density of multi-particle states $\log \Omega(E) = \widetilde{\mathcal{O}}((E/\Lambda_s)^{\alpha_\Omega}) \rightarrow T^{-1} = \frac{d \log \Omega}{dE}$
- Since $\alpha_{\Omega} > 1$ corresponds to black holes \rightarrow need $\alpha_{\Omega} \leq 1$ for energies $\Lambda_s \ll E \ll M_{\text{BH,min}}$.
- Only possibility to achieve $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s$ is then $\alpha_{\Omega} = 1$.

 $\log \Omega(E) = \widetilde{\mathcal{O}}(E/\Lambda_{s}) \implies \log \rho(E) = \widetilde{\mathcal{O}}(E/\Lambda_{s})$ for $\Lambda_s \ll E \ll M_{\rm BH,min}$ Final Result: [Bedroya, Mishra, MW '24] 17

- So far: considered the regimes $E \lesssim \Lambda_s$ and $E \gtrsim \Lambda_s$ *(IR) (UV)*
- Have EFT description valid up to
 Λ_s and black hole description
 above M_{BH,min}.
 - \rightarrow consider temperature diagram

• Have $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s \longrightarrow$ need to consistently connect the regimes!

- Consider density of multi-particle states $\log \Omega(E) = \widetilde{\mathcal{O}}((E/\Lambda_s)^{\alpha_\Omega}) \rightarrow T^{-1} = \frac{d \log \Omega}{dE}$
- Since $\alpha_{\Omega} > 1$ corresponds to black holes \rightarrow need $\alpha_{\Omega} \leq 1$ for energies $\Lambda_s \ll E \ll M_{\text{BH,min}}$.
- Only possibility to achieve $T(\Lambda_s) = T(M_{\text{BH,min}}) = \Lambda_s$ is then $\alpha_{\Omega} = 1$.

► Final Result: $\log \Omega(E) = \widetilde{O}(E/\Lambda_s) \implies \log \rho(E) = \widetilde{O}(E/\Lambda_s)$ for $\Lambda_s \ll E \ll M_{\rm BH,min}$ [Bedroya, Mishra, MW '24]

Relation to Emergent String Conjecture

What do our results imply for the *light* towers of states?

- There are two possibilities in gravitational weak-coupling limit ($\Lambda_s \ll M_{pl}$):
 - 1. Lightest tower of states is KK tower with mass $m \ll \Lambda_s$.
 - 2. In absence of KK tower, lightest tower of states has exponential degeneracy $\rho(E) \sim e^{E/\Lambda_s}$.
- Exponential degeneracy reminiscent of excitations of critical string! $\log \rho(E) \sim E/M_s$
Relation to Emergent String Conjecture

What do our results imply for the *light* towers of states?

- There are two possibilities in gravitational weak-coupling limit ($\Lambda_s \ll M_{pl}$):
 - 1. Lightest tower of states is KK tower with mass $m \ll \Lambda_s$.
 - 2. In absence of KK tower, lightest tower of states has exponential degeneracy $\rho(E) \sim e^{E/\Lambda_s}$.
- Exponential degeneracy reminiscent of excitations of critical string! $\log \rho(E) \sim E/M_s$
- Compare to Emergent String Conjecture: [Lee, Lerche, Weigand '19]

Lightest tower of states in infinite distance limits is either a) a KK-tower, or b) the excitation tower of a critical string.

• Our results provide bottom-up evidence for such a *binary* choice! (Though from bottom-up we do not see that states always have to come from a fundamental string).

Summary

- Species Scale encodes crucial information about quantum gravity and is calculable via higher-derivative terms.
- In explicit examples can give an *upper bound* on Λ_s from terms protected e.g. by supersymmetry \rightarrow can give a bound on the maximally possible value for QG cutoff (Desert point).

$$\Lambda_s^{\max} < M_{\rm pl}$$

• Slope of species scale bounded everywhere in moduli space:

$$\left|\frac{\nabla\Lambda_s}{\Lambda_s}\right|^2 \le \frac{M_{\rm pl}^{2-d}}{d-2}$$

- In gravitational weak-coupling limit $\Lambda_s \ll M_{pl} \rightarrow$ density of one-particle states $\rho(E)$ has has **universal behavior**!
- From basic properties of gravity (black hole thermodynamics, scattering amplitudes) \rightarrow argue that lightest tower of states either KK-tower or has $\rho(E) \sim \exp(E/\Lambda_s)$

→ **Bottom-up evidence** for Emergent String Conjecture

06/03/2024

Thank you!

Max Wiesner Constraints on the Species Scale and the Spectrum of States in QG

Strings 2024

06/03/2024