Determinants and Branes in Twisted Holography

Kasia Budzik

Strings 2024, CERN

arXiv:2106.14859 [KB, D. Gaiotto] arXiv:2211.01419 [KB, D. Gaiotto] arXiv:2306.01039 [KB, D. Gaiotto, J. Kulp, B. Williams, J. Wu, M. Yu] + work in progress [KB]

• What are the holographic duals of BPS subsectors of SQFTs?

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by **twisting** (and Ω -deformations)

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω -deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

• Dependence on coupling drops out \implies combinatorics of large N

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

- Dependence on coupling drops out \implies combinatorics of large N
- More mathematically rigorous: homological algebra

Examples of dualities in B-model:

- 2d chiral algebra \iff B-model on $SL(2, \mathbb{C})$
- 4d holomorphic theory \iff non-commutative BCOV

Examples of dualities in B-model:

- 2d chiral algebra \iff B-model on $SL(2,\mathbb{C})$
- 4d holomorphic theory \iff non-commutative BCOV

Correspondence between determinants $\sim O(N)$ and "Giant Graviton" branes:

Examples of dualities in B-model:

- 2d chiral algebra \iff B-model on $SL(2,\mathbb{C})$
- 4d holomorphic theory \iff non-commutative BCOV

Correspondence between determinants $\sim O(N)$ and "Giant Graviton" branes:

• Non-perturbative D1-brane saddles

Examples of dualities in B-model:

- 2d chiral algebra \iff B-model on $SL(2,\mathbb{C})$
- 4d holomorphic theory on non-commutative BCOV

Correspondence between determinants $\sim O(N)$ and "Giant Graviton" branes:

- Non-perturbative D1-brane saddles
- Determinant modifications and open strings on D1 and D3-branes

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [{\pmb Q}, \phi] &= 0 & ({\pmb Q}\text{-closed}) \\ \phi &\sim \phi + \{ {\pmb Q}, \psi \} & (\text{modulo } {\pmb Q}\text{-exact}) \end{split}$$

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [{\pmb Q}, \phi] &= 0 & ({\pmb Q}\text{-closed}) \\ \phi &\sim \phi + \{ {\pmb Q}, \psi \} & (\text{modulo } {\pmb Q}\text{-exact}) \end{split}$$

· Restricts to a protected (BPS) subsector of SQFT

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [{\pmb Q}, \phi] &= 0 & ({\pmb Q}\text{-closed}) \\ \phi &\sim \phi + \{ {\pmb Q}, \psi \} & (\text{modulo } {\pmb Q}\text{-exact}) \end{split}$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

 $\{\boldsymbol{Q}, \tilde{Q}\} \sim P$

topological twist

Witten, ...

► holomorphic twist

Costello, Johansen, Nekrasov, ...

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$\begin{split} [{\pmb Q}, \phi] &= 0 & ({\pmb Q}\text{-closed}) \\ \phi &\sim \phi + \{ {\pmb Q}, \psi \} & (\text{modulo } {\pmb Q}\text{-exact}) \end{split}$$

- Restricts to a protected (BPS) subsector of SQFT
- · Correlation functions independent of some coordinates:

 $\{\boldsymbol{Q}, \tilde{Q}\} \sim P$

- topological twist
 - ► holomorphic twist Costello, Johansen, Nekrasov, ...
- · Extra math structure
 - \blacktriangleright ∞ -dim symmetry algebras

Witten, ...

Gwilliam, Saberi, Williams, ...

• Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]

- Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N} = 4$ SYM is a $\mathfrak{u}(N)$ gauged $\beta \gamma$ system:

$$\begin{split} X^i_j(z)Y^k_l(0) &\sim \delta^i_l \delta^k_j \; \frac{1}{N} \; \frac{1}{z} \\ b^i_j(z)c^k_l(0) &\sim \delta^i_l \delta^k_j \; \frac{1}{N} \; \frac{1}{z} \\ Q_{\text{BRST}} &\sim N \int \operatorname{Tr}(c[X,Y] + \frac{1}{2}b[c,c]) \end{split}$$

- Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N} = 4$ SYM is a $\mathfrak{u}(N)$ gauged $\beta \gamma$ system:

$$\begin{split} X^i_j(z) Y^k_l(0) &\sim \delta^i_l \delta^k_j \; \frac{1}{N} \; \frac{1}{z} \\ b^i_j(z) c^k_l(0) &\sim \delta^i_l \delta^k_j \; \frac{1}{N} \; \frac{1}{z} \\ Q_{\text{BRST}} &\sim N \int \operatorname{Tr}(c[X,Y] + \frac{1}{2} b[c,c]) \end{split}$$

• Combine fields into a superfield

$$C(z,\theta_1,\theta_2) = c(z) + \theta_1 X(z) + \theta_2 Y(z) + \theta_1 \theta_2 b(z)$$

- Any 4d $\mathcal{N} = 2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N} = 4$ SYM is a $\mathfrak{u}(N)$ gauged $\beta \gamma$ system:

$$\begin{split} X^i_j(z)Y^k_l(0) &\sim \delta^i_l \delta^k_j \; \frac{1}{N} \; \frac{1}{z} \\ b^i_j(z)c^k_l(0) &\sim \delta^i_l \delta^k_j \; \frac{1}{N} \; \frac{1}{z} \\ Q_{\text{BRST}} &\sim N \int \operatorname{Tr}(c[X,Y] + \frac{1}{2}b[c,c]) \end{split}$$

• Combine fields into a superfield

$$C(z, \theta_1, \theta_2) = c(z) + \theta_1 X(z) + \theta_2 Y(z) + \theta_1 \theta_2 b(z)$$

• The worldvolume theory of N D1-branes in B-model $\mathbb{C} \subset \mathbb{C}^3$

• The stack sources a **Beltrami differential** which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

• The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

```
[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on \mathbb{C}^3 + N D1-branes \longrightarrow B-model on SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3
\uparrow
chiral algebra
```

• The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

```
[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on \mathbb{C}^3 + N D1-branes \longrightarrow B-model on SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3
\uparrow
chiral algebra
```

Holographic dictionary: [Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

• Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $SL(2,\mathbb{C})$

• The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

```
[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on \mathbb{C}^3 + N D1-branes \longrightarrow B-model on SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3
\uparrow
chiral algebra
```

Holographic dictionary: [Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $SL(2,\mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $SL(2,\mathbb{C})$

• The stack sources a Beltrami differential which deforms complex structure:

 $\mathbb{C}^3 \setminus \mathbb{C} \to SL(2,\mathbb{C})$

```
[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on \mathbb{C}^3 + N D1-branes \longrightarrow B-model on SL(2, \mathbb{C}) \approx \text{AdS}_3 \times S^3
\uparrow
chiral algebra
```

Holographic dictionary: [Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $SL(2,\mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $SL(2, \mathbb{C})$
- Non-conformal \longleftrightarrow "Multicenter" asymptotically $SL(2,\mathbb{C})$ geometries vacua

Giant Gravitons

• Determinant operator in the chiral algebra

 $\det(m + X(z) + uY(z)), \qquad m \in \mathbb{C}$

is dual to a D1-brane wrapping $\mathbb{C}^* \cong \mathbb{R}_+ \times S^1$ in $SL(2,\mathbb{C}) \cong \mathsf{EAdS}_3 \times S^3$

Giant Gravitons

• Determinant operator in the chiral algebra

$$\det(m + X(z) + uY(z)), \qquad m \in \mathbb{C}$$

is dual to a D1-brane wrapping $\mathbb{C}^* \cong \mathbb{R}_+ \times S^1$ in $SL(2,\mathbb{C}) \cong \mathsf{EAdS}_3 \times S^3$

• Many possible brane configurations with the same boundary behaviour

Giant Gravitons

• Determinant operator in the chiral algebra

$$\det(m + X(z) + uY(z)), \qquad m \in \mathbb{C}$$

is dual to a D1-brane wrapping $\mathbb{C}^* \cong \mathbb{R}_+ \times S^1$ in $SL(2,\mathbb{C}) \cong \mathsf{EAdS}_3 \times S^3$

· Many possible brane configurations with the same boundary behaviour

Match saddles of determinant correlation functions with brane configurations

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

• Rewrite correlators using auxiliary bosonic variables ρ_j^i for $i \neq j$, $\rho_i^i \equiv m_i$

$$\left\langle \prod_{i}^{k} \det(m_{i} + X(z_{i}) + u_{i}Y(z_{i})) \right\rangle \sim \int \mathrm{d}\rho \; e^{NS[\rho]}$$

with action

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_i^j + \log \det \rho$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

• Rewrite correlators using **auxiliary bosonic variables** ρ_j^i for $i \neq j$, $\rho_i^i \equiv m_i$

$$\left\langle \prod_{i}^{k} \det(m_{i} + X(z_{i}) + u_{i}Y(z_{i})) \right\rangle \sim \int \mathrm{d}\rho \; e^{NS[\rho]}$$

with action

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_i^j + \log \det \rho$$

• Saddle point equations in the matrix form:

$$[\operatorname{diag}(z_i), \rho] + [\operatorname{diag}(u_i), \rho^{-1}] = 0$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

• Rewrite correlators using **auxiliary bosonic variables** ρ_j^i for $i \neq j$, $\rho_i^i \equiv m_i$

$$\left\langle \prod_{i}^{k} \det(m_{i} + X(z_{i}) + u_{i}Y(z_{i})) \right\rangle \sim \int \mathrm{d}\rho \; e^{NS[\rho]}$$

with action

$$S[\rho] = \frac{1}{2} \sum_{i \neq j} \frac{z_i - z_j}{u_i - u_j} \rho_j^i \rho_i^j + \log \det \rho$$

• Saddle point equations in the matrix form:

$$[\operatorname{diag}(z_i), \rho] + [\operatorname{diag}(u_i), \rho^{-1}] = 0$$

Saddles can be matched to holomorphic curves in SL(2, C) using a spectral curve construction [KB, Gaiotto '21]

• Determinant modifications correspond to brane excitations

[Berenstein '03]

 $\det X \longmapsto \varepsilon \varepsilon (X, X, \dots, X, 1, Y)$

• Determinant modifications correspond to brane excitations [Berenstein '03] $\det X \longmapsto \varepsilon \varepsilon (X, X, \dots, X, 1, Y)$ • Fermionize determinants $\det X = \int d\bar{\psi} d\psi \ e^{\bar{\psi} X \psi}, \quad \bar{\psi}_I, \psi^I, \quad I = 1, \dots, N$ $\bar{\psi}_I, \psi^I$ D1'

• (Anti)fundamental fermions can be interpreted as the ND1-D1' open strings

- (Anti)fundamental fermions can be interpreted as the ND1-D1' open strings
- Open strings on D1' brane couple to **mesons** that modify determinants:

[Gaiotto, Lee '21]

$$\int \mathrm{d}\bar{\psi}\mathrm{d}\psi \; e^{\bar{\psi}X\psi} \left(\bar{\psi}\psi\right) \left(\bar{\psi}Y\psi\right) \sim \varepsilon\varepsilon(X,X,\ldots,X,1,Y)$$

- (Anti)fundamental fermions can be interpreted as the ND1-D1' open strings
- Open strings on D1' brane couple to **mesons** that modify determinants:

[Gaiotto, Lee '21]

$$\int \mathrm{d}\bar{\psi}\mathrm{d}\psi \; e^{\bar{\psi}X\psi} \left(\bar{\psi}\psi\right) \left(\bar{\psi}Y\psi\right) \sim \varepsilon\varepsilon(X,X,\ldots,X,1,Y)$$

• Can be extended to powers of determinants $(\det X)^k$ and multiple branes $k \operatorname{D1}$ '

• The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

 $\tilde{C} = \tilde{c} + \theta_1 \tilde{X} + \theta_3 \tilde{Y} + \theta_1 \theta_3 \tilde{b}$

• The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

 $\tilde{C} = \tilde{c} + \theta_1 \tilde{X} + \theta_3 \tilde{Y} + \theta_1 \theta_3 \tilde{b}$

 Classification of (planar tree-level) BRST-closed single modifications of determinants:

D1'	mesons
$\partial^n \tilde{X}$	$\bar{\psi}Y^n\psi$
$\partial^n \tilde{Y}$	$\bar{\psi}\partial XY^n\psi+\ldots$
$\partial^n \tilde{c}$	$\bar{\psi}bY^{n-1}\psi + \dots$
$\partial^n \tilde{b}$	$\bar{\psi}\partial cY^n\psi+\ldots$

• The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

$$\tilde{C}=\tilde{c}+\theta_1\tilde{X}+\theta_3\tilde{Y}+\theta_1\theta_3\tilde{b}$$

 Classification of (planar tree-level) BRST-closed single modifications of determinants:

• Differential \widetilde{Q}_{BRST} of the (second) chiral algebra can be mapped to a dual differential on **multiple** mesons [WIP]

 $\widetilde{Q}_{\text{BRST}}\text{-closed} \iff \text{not exact modification} \\ \text{not} \ \widetilde{Q}_{\text{BRST}}\text{-exact} \iff \text{closed modification}$

• The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

$$\tilde{C}=\tilde{c}+\theta_1\tilde{X}+\theta_3\tilde{Y}+\theta_1\theta_3\tilde{b}$$

 Classification of (planar tree-level) BRST-closed single modifications of determinants:

• Differential $\widetilde{Q}_{\text{BRST}}$ of the (second) chiral algebra can be mapped to a dual differential on **multiple** mesons [WIP]

 $\widetilde{Q}_{\text{BRST}}\text{-closed} \iff \text{not exact modification} \\ \text{not} \ \widetilde{Q}_{\text{BRST}}\text{-exact} \iff \text{closed modification}$

Holomorphic twist of 4d $\mathcal{N} = 1$ SQFT:

Costello, Johansen, Nekrasov, Römelsberger, ...

• Defined as *Q*-cohomology

Holomorphic twist of 4d $\mathcal{N} = 1$ SQFT:

Costello, Johansen, Nekrasov, Römelsberger, ...

- Defined as *Q*-cohomology
- Captures the 1/4-BPS subsector (1/16-BPS in $\mathcal{N} = 4$ SYM)

Costello, Johansen, Nekrasov,

Römelsberger, ...

Holomorphic twist of 4d $\mathcal{N} = 1$ SQFT:

- Defined as *Q*-cohomology
- Captures the 1/4-BPS subsector (1/16-BPS in $\mathcal{N} = 4$ SYM)
- Twisted theory is 4d holomorphic

Holomorphic twist of 4d $\mathcal{N} = 1$ SQFT:

• Defined as *Q*-cohomology

Costello, Johansen, Nekrasov, Römelsberger, ...

- Captures the 1/4-BPS subsector (1/16-BPS in $\mathcal{N} = 4$ SYM)
- Twisted theory is 4d holomorphic
- · Categorification of the supersymmetric index

Costello, Johansen, Nekrasov,

Römelsberger, ...

Holomorphic twist of 4d $\mathcal{N} = 1$ SQFT:

- Defined as *Q*-cohomology
- Captures the 1/4-BPS subsector (1/16-BPS in $\mathcal{N} = 4$ SYM)
- Twisted theory is 4d holomorphic
- · Categorification of the supersymmetric index
- Extra math structure: [Gwilliam, Williams '21] [Saberi, Williams '20]
 - \blacktriangleright ∞ -dim symmetry algebra

Holomorphic BF theory

• The holomorphic twist of **pure 4d** $\mathcal{N} = 1$ **SYM** is the holomorphic BF theory:

$$\int_{\mathbb{C}^2} \mathrm{d}^2 z \operatorname{Tr} b\left(\bar{\partial} c - \frac{1}{2}[c,c]\right),\,$$

where

$$\begin{split} b &= b^{(0)} + b_i^{(1)} \mathrm{d}\bar{z}^i + b^{(2)} \mathrm{d}\bar{z}^1 \mathrm{d}\bar{z}^2 \in \Omega^{0,*} \\ c &= c^{(0)} + c_i^{(1)} \mathrm{d}\bar{z}^i + c^{(2)} \mathrm{d}\bar{z}^1 \mathrm{d}\bar{z}^2 \in \Omega^{0,*} \\ \end{split} \qquad \text{valued in } \mathfrak{g} = \mathfrak{su}(N) \end{split}$$

Holomorphic BF theory

• The holomorphic twist of **pure 4d** $\mathcal{N} = 1$ **SYM** is the holomorphic BF theory:

$$\int_{\mathbb{C}^2} \mathrm{d}^2 z \operatorname{Tr} b\left(\bar{\partial} c - \frac{1}{2}[c,c]\right),\,$$

where

$$\begin{split} b &= b^{(0)} + b_i^{(1)} \mathrm{d}\bar{z}^i + b^{(2)} \mathrm{d}\bar{z}^1 \mathrm{d}\bar{z}^2 \in \Omega^{0,*} \\ c &= c^{(0)} + c_i^{(1)} \mathrm{d}\bar{z}^i + c^{(2)} \mathrm{d}\bar{z}^1 \mathrm{d}\bar{z}^2 \in \Omega^{0,*} \\ \end{split} \qquad \text{valued in } \mathfrak{g} = \mathfrak{su}(N) \end{split}$$

• Twist of the vector multiplet

[Saberi, Williams '20]

 $\begin{array}{c} F_{++} \leftrightarrow b^{(0)} \\ \\ \tilde{\lambda}_{\dot{\alpha}} \leftrightarrow \partial_{z^{\dot{\alpha}}} c^{(0)} \end{array}$

Holomorphic BF theory

• The holomorphic twist of **pure 4d** $\mathcal{N} = 1$ **SYM** is the holomorphic BF theory:

$$\int_{\mathbb{C}^2} \mathrm{d}^2 z \operatorname{Tr} b\left(\bar{\partial} c - \frac{1}{2}[c,c]\right),\,$$

where

$$\begin{split} b &= b^{(0)} + b_i^{(1)} \mathrm{d}\bar{z}^i + b^{(2)} \mathrm{d}\bar{z}^1 \mathrm{d}\bar{z}^2 \in \Omega^{0,*} \\ c &= c^{(0)} + c_i^{(1)} \mathrm{d}\bar{z}^i + c^{(2)} \mathrm{d}\bar{z}^1 \mathrm{d}\bar{z}^2 \in \Omega^{0,*} \\ \end{split} \qquad \text{valued in } \mathfrak{g} = \mathfrak{su}(N) \end{split}$$

• Twist of the vector multiplet

[Saberi, Williams '20]

 $\begin{array}{c} F_{++} \leftrightarrow b^{(0)} \\ \\ \tilde{\lambda}_{\dot{\alpha}} \leftrightarrow \partial_{z^{\dot{\alpha}}} c^{(0)} \end{array}$

- ${\it Q}\mbox{-}{\rm cohomology}$ of ${\cal N}=1$ SYM is equivalent to the BRST cohomology of holomorphic BF theory

• Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^3$

 $C=c+\theta b$

• Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^3$

$$C = c + \theta b$$

• The branes source a bivector field:

$$\eta = \frac{1}{z_3} \partial_{z_1} \wedge \partial_{z_2} \in \mathrm{PV}^{(2,0)}(\mathbb{C}^3 \setminus \mathbb{C}^2)$$

• Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^3$

$$C = c + \theta b$$

• The branes source a bivector field:

$$\eta = \frac{1}{z_3} \partial_{z_1} \wedge \partial_{z_2} \in \mathrm{PV}^{(2,0)}(\mathbb{C}^3 \setminus \mathbb{C}^2)$$

• η introduces **non-commutativity in spacetime**

• Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^3$

$$C = c + \theta b$$

• The branes source a bivector field:

$$\eta = \frac{1}{z_3} \partial_{z_1} \wedge \partial_{z_2} \in \mathrm{PV}^{(2,0)}(\mathbb{C}^3 \setminus \mathbb{C}^2)$$

• η introduces **non-commutativity in spacetime**

[KB, Gaiotto, Kulp, Williams, Wu, Yu '23]
B-model on
$$\mathbb{C}^3 + N$$
 D3-branes \longrightarrow B-model on $\mathbb{C}^3 \setminus \mathbb{C}^2 + \eta$
 \uparrow
holomorphic BF theory

• Holomorphic twist of $\mathcal{N}=4$ SYM captures the 1/16-BPS subsector

[Chi-Ming Chang's talk]

- Holomorphic twist of $\mathcal{N} = 4$ SYM captures the 1/16-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory + 3 $\beta\gamma$ systems + superpotential $W(\gamma)$

$$\Psi = c + \theta_i \gamma^i - \frac{1}{2} \varepsilon^{ijk} \theta_i \theta_j \beta_k - \theta_1 \theta_2 \theta_3 b, \qquad i = 1, 2, 3$$

- Holomorphic twist of $\mathcal{N} = 4$ SYM captures the 1/16-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory + 3 $\beta\gamma$ systems + superpotential $W(\gamma)$

$$\Psi = c + \theta_i \gamma^i - \frac{1}{2} \varepsilon^{ijk} \theta_i \theta_j \beta_k - \theta_1 \theta_2 \theta_3 b, \qquad i = 1, 2, 3$$

• Worldvolume of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^5,$ which also source noncommutativity

 $F \in \mathrm{PV}^{(2,2)}(\mathbb{C}^5 \setminus \mathbb{C}^2)$ [Costello, Gaiotto '18]

- Holomorphic twist of $\mathcal{N} = 4$ SYM captures the 1/16-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory + 3 $\beta\gamma$ systems + superpotential $W(\gamma)$

$$\Psi = c + \theta_i \gamma^i - \frac{1}{2} \varepsilon^{ijk} \theta_i \theta_j \beta_k - \theta_1 \theta_2 \theta_3 b, \qquad i = 1, 2, 3$$

• Worldvolume of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^5,$ which also source noncommutativity

$$F \in \mathrm{PV}^{(2,2)}(\mathbb{C}^5 \setminus \mathbb{C}^2)$$
 [Costello, Gaiotto '18]

Giant Graviton branes are also D3'-branes

- Holomorphic twist of $\mathcal{N} = 4$ SYM captures the 1/16-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory + 3 $\beta\gamma$ systems + superpotential $W(\gamma)$

$$\Psi = c + \theta_i \gamma^i - \frac{1}{2} \varepsilon^{ijk} \theta_i \theta_j \beta_k - \theta_1 \theta_2 \theta_3 b, \qquad i = 1, 2, 3$$

• Worldvolume of N D3-branes $\mathbb{C}^2 \subset \mathbb{C}^5,$ which also source noncommutativity

$$F \in PV^{(2,2)}(\mathbb{C}^5 \setminus \mathbb{C}^2)$$
 [Costello, Gaiotto '18]

- Giant Graviton branes are also D3'-branes
- Classification of determinant modifications in $\mathcal{N} = 4$ SYM (also BMN subsector and holomorphic BF theory) using correspondence with Giant Graviton branes [WIP]

 Determinant modifications give families(N) of BPS operators in N = 4 SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators? [Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]

- Determinant modifications give families(N) of BPS operators in N = 4 SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators? [Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^2$ and new geometries
 - \blacktriangleright Large powers $\sim N$ of determinants $\sim N \implies$ Multi-matrix models

- Determinant modifications give families(N) of BPS operators in N = 4 SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators? [Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^2$ and new geometries
 - \blacktriangleright Large powers $\sim N$ of determinants $\sim N \implies$ Multi-matrix models
 - ▶ How to twist SUGRA black hole solutions?

- Determinant modifications give families(N) of BPS operators in N = 4 SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators? [Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^2$ and new geometries
 - Large powers $\sim N$ of determinants $\sim N \implies$ Multi-matrix models
 - How to twist SUGRA black hole solutions?
- Stokes phenomena and summing over brane $\sim N$ and geometry $\sim N^2$ saddles

- Determinant modifications give families(N) of BPS operators in N = 4 SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators? [Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^2$ and new geometries
 - Large powers $\sim N$ of determinants $\sim N \implies$ Multi-matrix models
 - How to twist SUGRA black hole solutions?
- Stokes phenomena and summing over brane $\sim\!N$ and geometry $\sim\!N^2$ saddles
- Holographic dictionary for non-commutative BCOV (backreacted D3-branes)

- Determinant modifications give families(N) of BPS operators in N = 4 SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators? [Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^2$ and new geometries
 - Large powers $\sim N$ of determinants $\sim N \implies$ Multi-matrix models
 - How to twist SUGRA black hole solutions?
- Stokes phenomena and summing over brane $\sim N$ and geometry $\sim N^2$ saddles
- Holographic dictionary for non-commutative BCOV (backreacted D3-branes)

Thank you!