Determinants and Branes in Twisted Holography

Kasia Budzik
Strings 2024, CERN

```
    arXiv:2106.14859 [KB, D. Gaiotto]
    arXiv:2211.01419 [KB, D. Gaiotto]
    arXiv:2306.01039 [KB, D. Gaiotto, J. Kulp, B. Williams, J. Wu, M. Yu]
+ work in progress [KB]
```


Twisted Holography

- What are the holographic duals of BPS subsectors of SQFTs?

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

Eg. protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$: [Costello, Gaiotto '18]

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

Eg. protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

- Dependence on coupling drops out \Longrightarrow combinatorics of large N

Twisted Holography

- What are the holographic duals of BPS subsectors of SQFTs?
- Restrict to BPS subsector by twisting (and Ω-deformations)
- Usually dual to topological strings/BCOV theory (or twisted M-theory)

Eg. protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$:
[Costello, Gaiotto '18]

- Dependence on coupling drops out \Longrightarrow combinatorics of large N
- More mathematically rigorous: homological algebra

In this talk

Examples of dualities in B-model:

- 2d chiral algebra \Longleftrightarrow B-model on $S L(2, \mathbb{C})$
- 4d holomorphic theory \Longleftrightarrow non-commutative BCOV

In this talk

Examples of dualities in B-model:

- 2d chiral algebra \Longleftrightarrow B-model on $S L(2, \mathbb{C})$
- 4d holomorphic theory \Longleftrightarrow non-commutative BCOV

Correspondence between determinants $\sim \mathcal{O}(N)$ and "Giant Graviton" branes:

In this talk

Examples of dualities in B-model:

- 2d chiral algebra \Longleftrightarrow B-model on $S L(2, \mathbb{C})$
- 4d holomorphic theory \Longleftrightarrow non-commutative BCOV

Correspondence between determinants $\sim \mathcal{O}(N)$ and "Giant Graviton" branes:

- Non-perturbative D1-brane saddles

In this talk

Examples of dualities in B-model:

- 2d chiral algebra \Longleftrightarrow B-model on $S L(2, \mathbb{C})$
- 4d holomorphic theory \Longleftrightarrow non-commutative BCOV

Correspondence between determinants $\sim \mathcal{O}(N)$ and "Giant Graviton" branes:

- Non-perturbative D1-brane saddles
- Determinant modifications and open strings on D1 and D3-branes

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+\{\boldsymbol{Q}, \psi\} & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+\{\boldsymbol{Q}, \psi\} & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Restricts to a protected (BPS) subsector of SQFT

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+\{\boldsymbol{Q}, \psi\} & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

$$
\{\boldsymbol{Q}, \tilde{Q}\} \sim P
$$

- topological twist
- holomorphic twist

Costello, Johansen, Nekrasov, ...

Twisting Supersymmetric QFTs

Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+\{\boldsymbol{Q}, \psi\} & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Restricts to a protected (BPS) subsector of SQFT
- Correlation functions independent of some coordinates:

$$
\{\boldsymbol{Q}, \tilde{Q}\} \sim P
$$

- topological twist

Witten, ...
Costello, Johansen, Nekrasov, ...

- Extra math structure
- ∞-dim symmetry algebras

Chiral algebra subsector

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2 d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]

Chiral algebra subsector

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N}=4 \mathrm{SYM}$ is a $\mathfrak{u}(N)$ gauged $\beta \gamma$ system:

$$
\begin{aligned}
X_{j}^{i}(z) Y_{l}^{k}(0) & \sim \delta_{l}^{i} \delta_{j}^{k} \frac{1}{N} \frac{1}{z} \\
b_{j}^{i}(z) c_{l}^{k}(0) & \sim \delta_{l}^{i} \delta_{j}^{k} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \int \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

Chiral algebra subsector

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N}=4 \mathrm{SYM}$ is a $\mathfrak{u}(N)$ gauged $\beta \gamma$ system:

$$
\begin{aligned}
X_{j}^{i}(z) Y_{l}^{k}(0) & \sim \delta_{l}^{i} \delta_{j}^{k} \frac{1}{N} \frac{1}{z} \\
b_{j}^{i}(z) c_{l}^{k}(0) & \sim \delta_{l}^{i} \delta_{j}^{k} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \int \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

- Combine fields into a superfield

$$
C\left(z, \theta_{1}, \theta_{2}\right)=c(z)+\theta_{1} X(z)+\theta_{2} Y(z)+\theta_{1} \theta_{2} b(z)
$$

Chiral algebra subsector

- Any 4d $\mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector [Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N}=4 \mathrm{SYM}$ is a $\mathfrak{u}(N)$ gauged $\beta \gamma$ system:

$$
\begin{aligned}
X_{j}^{i}(z) Y_{l}^{k}(0) & \sim \delta_{l}^{i} \delta_{j}^{k} \frac{1}{N} \frac{1}{z} \\
b_{j}^{i}(z) c_{l}^{k}(0) & \sim \delta_{l}^{i} \delta_{j}^{k} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \int \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

- Combine fields into a superfield

$$
C\left(z, \theta_{1}, \theta_{2}\right)=c(z)+\theta_{1} X(z)+\theta_{2} Y(z)+\theta_{1} \theta_{2} b(z)
$$

- The worldvolume theory of N D1-branes in B-model $\mathbb{C} \subset \mathbb{C}^{3}$

Backreaction

- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

Backreaction

- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow
chiral algebra

Backreaction

- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow
chiral algebra

Holographic dictionary:
[Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $S L(2, \mathbb{C})$

Backreaction

- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow
chiral algebra

Holographic dictionary:
[Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $S L(2, \mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $S L(2, \mathbb{C})$

Backreaction

- The stack sources a Beltrami differential which deforms complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

[Gopakumar, Vafa '99] [Costello, Gaiotto '18]
B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$ \uparrow
chiral algebra

Holographic dictionary:
[Costello, Gaiotto '18] [KB, Gaiotto '21 '22]

- Single traces \longleftrightarrow Deformations of BCOV boundary conditions on $S L(2, \mathbb{C})$
- Determinants \longleftrightarrow "Giant Graviton" D1-branes in $S L(2, \mathbb{C})$
- Non-conformal \longleftrightarrow "Multicenter" asymptotically $S L(2, \mathbb{C})$ geometries vacua

Giant Gravitons

- Determinant operator in the chiral algebra

$$
\operatorname{det}(m+X(z)+u Y(z)), \quad m \in \mathbb{C}
$$

is dual to a D1-brane wrapping $\mathbb{C}^{*} \cong \mathbb{R}_{+} \times S^{1}$ in $S L(2, \mathbb{C}) \cong \mathrm{EAdS}_{3} \times S^{3}$

Giant Gravitons

- Determinant operator in the chiral algebra

$$
\operatorname{det}(m+X(z)+u Y(z)), \quad m \in \mathbb{C}
$$

is dual to a D1-brane wrapping $\mathbb{C}^{*} \cong \mathbb{R}_{+} \times S^{1}$ in $S L(2, \mathbb{C}) \cong \mathrm{EAdS}_{3} \times S^{3}$

- Many possible brane configurations with the same boundary behaviour

Giant Gravitons

- Determinant operator in the chiral algebra

$$
\operatorname{det}(m+X(z)+u Y(z)), \quad m \in \mathbb{C}
$$

is dual to a D1-brane wrapping $\mathbb{C}^{*} \cong \mathbb{R}_{+} \times S^{1}$ in $S L(2, \mathbb{C}) \cong \mathrm{EAdS}_{3} \times S^{3}$

- Many possible brane configurations with the same boundary behaviour

- Match saddles of determinant correlation functions with brane configurations

Determinant correlation functions

- Rewrite correlators using auxiliary bosonic variables ρ_{j}^{i} for $i \neq j, \rho_{i}^{i} \equiv m_{i}$

$$
\left\langle\prod_{i}^{k} \operatorname{det}\left(m_{i}+X\left(z_{i}\right)+u_{i} Y\left(z_{i}\right)\right)\right\rangle \sim \int \mathrm{d} \rho e^{N S[\rho]}
$$

with action

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

Determinant correlation functions

- Rewrite correlators using auxiliary bosonic variables ρ_{j}^{i} for $i \neq j, \rho_{i}^{i} \equiv m_{i}$

$$
\left\langle\prod_{i}^{k} \operatorname{det}\left(m_{i}+X\left(z_{i}\right)+u_{i} Y\left(z_{i}\right)\right)\right\rangle \sim \int \mathrm{d} \rho e^{N S[\rho]}
$$

with action

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

- Saddle point equations in the matrix form:

$$
\left[\operatorname{diag}\left(z_{i}\right), \rho\right]+\left[\operatorname{diag}\left(u_{i}\right), \rho^{-1}\right]=0
$$

Determinant correlation functions

- Rewrite correlators using auxiliary bosonic variables ρ_{j}^{i} for $i \neq j, \rho_{i}^{i} \equiv m_{i}$

$$
\left\langle\prod_{i}^{k} \operatorname{det}\left(m_{i}+X\left(z_{i}\right)+u_{i} Y\left(z_{i}\right)\right)\right\rangle \sim \int \mathrm{d} \rho e^{N S[\rho]}
$$

with action

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

- Saddle point equations in the matrix form:

$$
\left[\operatorname{diag}\left(z_{i}\right), \rho\right]+\left[\operatorname{diag}\left(u_{i}\right), \rho^{-1}\right]=0
$$

- Saddles can be matched to holomorphic curves in $S L(2, \mathbb{C})$ using a spectral curve construction

Determinant modifications

- Determinant modifications correspond to brane excitations
[Berenstein '03]

$$
\operatorname{det} X \longmapsto \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

Determinant modifications

- Determinant modifications correspond to brane excitations
[Berenstein '03]

$$
\operatorname{det} X \longmapsto \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

- Fermionize determinants

$$
\operatorname{det} X=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi} X \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

Determinant modifications

- Determinant modifications correspond to brane excitations

$$
\operatorname{det} X \longmapsto \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

- Fermionize determinants

$$
\operatorname{det} X=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi} X \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

- (Anti)fundamental fermions can be interpreted as the ND1-D1' open strings

Determinant modifications

- Determinant modifications correspond to brane excitations

$$
\operatorname{det} X \longmapsto \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

- Fermionize determinants

$$
\operatorname{det} X=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi} X \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

- (Anti)fundamental fermions can be interpreted as the ND1-D1' open strings
- Open strings on D1' brane couple to mesons that modify determinants:
[Gaiotto, Lee '21]

$$
\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi} X \psi}(\bar{\psi} \psi)(\bar{\psi} Y \psi) \sim \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

Determinant modifications

- Determinant modifications correspond to brane excitations

$$
\operatorname{det} X \longmapsto \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

- Fermionize determinants

$$
\operatorname{det} X=\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi} X \psi}, \quad \bar{\psi}_{I}, \psi^{I}, \quad I=1, \ldots, N
$$

- (Anti)fundamental fermions can be interpreted as the ND1-D1' open strings
- Open strings on D1' brane couple to mesons that modify determinants:
[Gaiotto, Lee '21]

$$
\int \mathrm{d} \bar{\psi} \mathrm{~d} \psi e^{\bar{\psi} X \psi}(\bar{\psi} \psi)(\bar{\psi} Y \psi) \sim \varepsilon \varepsilon(X, X, \ldots, X, 1, Y)
$$

- Can be extended to powers of determinants $(\operatorname{det} X)^{k}$ and multiple branes k D1'

Determinant modifications

- The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

$$
\tilde{C}=\tilde{c}+\theta_{1} \tilde{X}+\theta_{3} \tilde{Y}+\theta_{1} \theta_{3} \tilde{b}
$$

Determinant modifications

- The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

$$
\tilde{C}=\tilde{c}+\theta_{1} \tilde{X}+\theta_{3} \tilde{Y}+\theta_{1} \theta_{3} \tilde{b}
$$

- Classification of (planar tree-level) BRST-closed single modifications of determinants:

D1'	mesons
$\partial^{n} \tilde{X}$	$\bar{\psi} Y^{n} \psi$
$\partial^{n} \tilde{Y}$	$\bar{\psi} \partial X Y^{n} \psi+\ldots$
$\partial^{n} \tilde{c}$	$\bar{\psi} b Y^{n-1} \psi+\ldots$
$\partial^{n} \tilde{b}$	$\bar{\psi} \partial c Y^{n} \psi+\ldots$

Determinant modifications

- The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

$$
\tilde{C}=\tilde{c}+\theta_{1} \tilde{X}+\theta_{3} \tilde{Y}+\theta_{1} \theta_{3} \tilde{b}
$$

- Classification of (planar tree-level) BRST-closed single modifications of determinants:

D1'	mesons
$\partial^{n} \tilde{X}$	$\bar{\psi} Y^{n} \psi$
$\partial^{n} \tilde{Y}$	$\bar{\psi} \partial X Y^{n} \psi+\ldots$
$\partial^{n} \tilde{c}$	$\bar{\psi} b Y^{n-1} \psi+\ldots$
$\partial^{n} \tilde{b}$	$\bar{\psi} \partial c Y^{n} \psi+\ldots$

- Differential $\widetilde{Q}_{\text {BRST }}$ of the (second) chiral algebra can be mapped to a dual differential on multiple mesons

$$
\begin{aligned}
\widetilde{Q}_{\text {BRST }} \text {-closed } & \Longleftrightarrow \text { not exact modification } \\
\text { not } \widetilde{Q}_{\text {BRST-exact }} & \Longleftrightarrow \text { closed modification }
\end{aligned}
$$

Determinant modifications

- The wordlvolume theory on the probe D1' brane is a (second) chiral algebra

$$
\tilde{C}=\tilde{c}+\theta_{1} \tilde{X}+\theta_{3} \tilde{Y}+\theta_{1} \theta_{3} \tilde{b}
$$

- Classification of (planar tree-level) BRST-closed single modifications of determinants:

D1'	mesons
$\partial^{n} \tilde{X}$	$\bar{\psi} Y^{n} \psi$
$\partial^{n} \tilde{Y}$	$\bar{\psi} \partial X Y^{n} \psi+\ldots$
$\partial^{n} \tilde{c}$	$\bar{\psi} b Y^{n-1} \psi+\ldots$
$\partial^{n} \tilde{b}$	$\bar{\psi} \partial c Y^{n} \psi+\ldots$

- Differential $\widetilde{Q}_{\text {BRST }}$ of the (second) chiral algebra can be mapped to a dual differential on multiple mesons

$$
\begin{aligned}
\widetilde{Q}_{\text {BRST }} \text {-closed } & \Longleftrightarrow \text { not exact modification } \\
\text { not } \widetilde{Q}_{\text {BRST-exact }} & \Longleftrightarrow \text { closed modification }
\end{aligned}
$$

Holomorphic twist

Holomorphic twist of $4 \mathbf{d} \mathcal{N}=1$ SQFT:
Costello, Johansen, Nekrasov, Römelsberger, ...

- Defined as Q-cohomology

Holomorphic twist

Holomorphic twist of $4 \mathbf{d} \mathcal{N}=1$ SQFT:
Costello, Johansen, Nekrasov, Römelsberger, ...

- Defined as Q-cohomology
- Captures the $1 / 4$-BPS subsector ($1 / 16$-BPS in $\mathcal{N}=4$ SYM $)$

Holomorphic twist

Holomorphic twist of $4 \mathbf{d} \mathcal{N}=1$ SQFT:
Costello, Johansen, Nekrasov, Römelsberger, ...

- Defined as Q-cohomology
- Captures the $1 / 4$-BPS subsector ($1 / 16$-BPS in $\mathcal{N}=4$ SYM $)$
- Twisted theory is 4d holomorphic

Holomorphic twist

Holomorphic twist of $4 \mathbf{d} \mathcal{N}=1$ SQFT:
Costello, Johansen, Nekrasov, Römelsberger, ...

- Defined as Q-cohomology
- Captures the $1 / 4$-BPS subsector (1/16-BPS in $\mathcal{N}=4$ SYM $)$
- Twisted theory is 4d holomorphic
- Categorification of the supersymmetric index

Holomorphic twist

Holomorphic twist of $4 \mathbf{d} \mathcal{N}=1$ SQFT:
Costello, Johansen, Nekrasov, Römelsberger, ...

- Defined as Q-cohomology
- Captures the $1 / 4$-BPS subsector (1/16-BPS in $\mathcal{N}=4$ SYM $)$
- Twisted theory is 4d holomorphic
- Categorification of the supersymmetric index
- Extra math structure:
[Gwilliam, Williams '21] [Saberi, Williams '20]
- ∞-dim symmetry algebra

Holomorphic BF theory

- The holomorphic twist of pure $\mathbf{4 d} \mathcal{N}=1 \mathbf{S Y M}$ is the holomorphic BF theory:

$$
\int_{\mathbb{C}^{2}} \mathrm{~d}^{2} z \operatorname{Tr} b\left(\bar{\partial} c-\frac{1}{2}[c, c]\right)
$$

where

$$
\begin{aligned}
& b=b^{(0)}+b_{i}^{(1)} \mathrm{d} \bar{z}^{i}+b^{(2)} \mathrm{d} \bar{z}^{1} \mathrm{~d} \bar{z}^{2} \in \Omega^{0, *} \\
& c=c^{(0)}+c_{i}^{(1)} \mathrm{d} \bar{z}^{i}+c^{(2)} \mathrm{d} \bar{z}^{1} \mathrm{~d} \bar{z}^{2} \in \Omega^{0, *} \quad \text { valued in } \mathfrak{g}=\mathfrak{s u}(N)
\end{aligned}
$$

Holomorphic BF theory

- The holomorphic twist of pure $\mathbf{4 d} \mathcal{N}=1 \mathbf{S Y M}$ is the holomorphic BF theory:

$$
\int_{\mathbb{C}^{2}} \mathrm{~d}^{2} z \operatorname{Tr} b\left(\bar{\partial} c-\frac{1}{2}[c, c]\right)
$$

where

$$
\begin{aligned}
& b=b^{(0)}+b_{i}^{(1)} \mathrm{d} \bar{z}^{i}+b^{(2)} \mathrm{d} \bar{z}^{1} \mathrm{~d} \bar{z}^{2} \in \Omega^{0, *} \\
& c=c^{(0)}+c_{i}^{(1)} \mathrm{d} \bar{z}^{i}+c^{(2)} \mathrm{d} \bar{z}^{1} \mathrm{~d} \bar{z}^{2} \in \Omega^{0, *} \quad \text { valued in } \mathfrak{g}=\mathfrak{s u}(N)
\end{aligned}
$$

- Twist of the vector multiplet

$$
\begin{aligned}
F_{++} & \leftrightarrow b^{(0)} \\
\tilde{\lambda}_{\dot{\alpha}} & \leftrightarrow \partial_{z^{\dot{\alpha}}} c^{(0)}
\end{aligned}
$$

Holomorphic BF theory

- The holomorphic twist of pure $\mathbf{4 d} \mathcal{N}=1 \mathbf{S Y M}$ is the holomorphic BF theory:

$$
\int_{\mathbb{C}^{2}} \mathrm{~d}^{2} z \operatorname{Tr} b\left(\bar{\partial} c-\frac{1}{2}[c, c]\right)
$$

where

$$
\begin{aligned}
& b=b^{(0)}+b_{i}^{(1)} \mathrm{d} \bar{z}^{i}+b^{(2)} \mathrm{d} \bar{z}^{1} \mathrm{~d} \bar{z}^{2} \in \Omega^{0, *} \\
& c=c^{(0)}+c_{i}^{(1)} \mathrm{d} \bar{z}^{i}+c^{(2)} \mathrm{d} \bar{z}^{1} \mathrm{~d} \bar{z}^{2} \in \Omega^{0, *} \quad \text { valued in } \mathfrak{g}=\mathfrak{s u}(N)
\end{aligned}
$$

- Twist of the vector multiplet

$$
\begin{aligned}
F_{++} & \leftrightarrow b^{(0)} \\
\tilde{\lambda}_{\dot{\alpha}} & \leftrightarrow \partial_{z^{\dot{\alpha}}} c^{(0)}
\end{aligned}
$$

- \boldsymbol{Q}-cohomology of $\mathcal{N}=1 \mathrm{SYM}$ is equivalent to the BRST cohomology of holomorphic BF theory

Twisted Holography

- Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{3}$

$$
C=c+\theta b
$$

Twisted Holography

- Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{3}$

$$
C=c+\theta b
$$

- The branes source a bivector field:

$$
\eta=\frac{1}{z_{3}} \partial_{z_{1}} \wedge \partial_{z_{2}} \in \mathrm{PV}^{(2,0)}\left(\mathbb{C}^{3} \backslash \mathbb{C}^{2}\right)
$$

Twisted Holography

- Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{3}$

$$
C=c+\theta b
$$

- The branes source a bivector field:

$$
\eta=\frac{1}{z_{3}} \partial_{z_{1}} \wedge \partial_{z_{2}} \in \mathrm{PV}^{(2,0)}\left(\mathbb{C}^{3} \backslash \mathbb{C}^{2}\right)
$$

- η introduces non-commutativity in spacetime

Twisted Holography

- Holomorphic BF theory is the worldvolume theory of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{3}$

$$
C=c+\theta b
$$

- The branes source a bivector field:

$$
\eta=\frac{1}{z_{3}} \partial_{z_{1}} \wedge \partial_{z_{2}} \in \mathrm{PV}^{(2,0)}\left(\mathbb{C}^{3} \backslash \mathbb{C}^{2}\right)
$$

- η introduces non-commutativity in spacetime

[KB, Gaiotto, Kulp, Williams, Wu, Yu '23]

B-model on $\mathbb{C}^{3}+N$ D3-branes \longrightarrow B-model on $\mathbb{C}^{3} \backslash \mathbb{C}^{2}+\eta$
$\stackrel{\uparrow}{\text { holomorphic BF theory }}$

$1 / 16$-BPS subsector of $\mathcal{N}=4 \mathbf{S Y M}$

- Holomorphic twist of $\mathcal{N}=4$ SYM captures the 1/16-BPS subsector
[Chi-Ming Chang's talk]

$1 / 16$-BPS subsector of $\mathcal{N}=4 \mathbf{S Y M}$

- Holomorphic twist of $\mathcal{N}=4$ SYM captures the 1/16-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory $+3 \beta \gamma$ systems + superpotential $W(\gamma)$

$$
\Psi=c+\theta_{i} \gamma^{i}-\frac{1}{2} \varepsilon^{i j k} \theta_{i} \theta_{j} \beta_{k}-\theta_{1} \theta_{2} \theta_{3} b, \quad i=1,2,3
$$

$1 / 16$-BPS subsector of $\mathcal{N}=4 \mathbf{S Y M}$

- Holomorphic twist of $\mathcal{N}=4$ SYM captures the 1/16-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory $+3 \beta \gamma$ systems + superpotential $W(\gamma)$

$$
\Psi=c+\theta_{i} \gamma^{i}-\frac{1}{2} \varepsilon^{i j k} \theta_{i} \theta_{j} \beta_{k}-\theta_{1} \theta_{2} \theta_{3} b, \quad i=1,2,3
$$

- Worldvolume of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{5}$, which also source noncommutativity

$$
F \in \mathrm{PV}^{(2,2)}\left(\mathbb{C}^{5} \backslash \mathbb{C}^{2}\right)
$$

[Costello, Gaiotto '18]

$1 / 16$-BPS subsector of $\mathcal{N}=4 \mathbf{S Y M}$

- Holomorphic twist of $\mathcal{N}=4$ SYM captures the $1 / 16$-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory $+3 \beta \gamma$ systems + superpotential $W(\gamma)$

$$
\Psi=c+\theta_{i} \gamma^{i}-\frac{1}{2} \varepsilon^{i j k} \theta_{i} \theta_{j} \beta_{k}-\theta_{1} \theta_{2} \theta_{3} b, \quad i=1,2,3
$$

- Worldvolume of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{5}$, which also source noncommutativity

$$
F \in \mathrm{PV}^{(2,2)}\left(\mathbb{C}^{5} \backslash \mathbb{C}^{2}\right)
$$

[Costello, Gaiotto '18]

- Giant Graviton branes are also D3'-branes

1/16-BPS subsector of $\mathcal{N}=4$ SYM

- Holomorphic twist of $\mathcal{N}=4$ SYM captures the $1 / 16$-BPS subsector [Chi-Ming Chang's talk]
- Holomorphic BF theory $+3 \beta \gamma$ systems + superpotential $W(\gamma)$

$$
\Psi=c+\theta_{i} \gamma^{i}-\frac{1}{2} \varepsilon^{i j k} \theta_{i} \theta_{j} \beta_{k}-\theta_{1} \theta_{2} \theta_{3} b, \quad i=1,2,3
$$

- Worldvolume of N D3-branes $\mathbb{C}^{2} \subset \mathbb{C}^{5}$, which also source noncommutativity

$$
F \in \mathrm{PV}^{(2,2)}\left(\mathbb{C}^{5} \backslash \mathbb{C}^{2}\right)
$$

[Costello, Gaiotto '18]

- Giant Graviton branes are also D3'-branes
- Classification of determinant modifications in $\mathcal{N}=4$ SYM (also BMN subsector and holomorphic BF theory) using correspondence with Giant Graviton branes

Future directions

- Determinant modifications give families (N) of BPS operators in $\mathcal{N}=4$ SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators?
[Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]

Future directions

- Determinant modifications give families (N) of BPS operators in $\mathcal{N}=4$ SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators?
[Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^{2}$ and new geometries
- Large powers $\sim N$ of determinants $\sim N \Longrightarrow$ Multi-matrix models

Future directions

- Determinant modifications give families (N) of BPS operators in $\mathcal{N}=4$ SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators?
[Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^{2}$ and new geometries
- Large powers $\sim N$ of determinants $\sim N \Longrightarrow$ Multi-matrix models
- How to twist SUGRA black hole solutions?

Future directions

- Determinant modifications give families (N) of BPS operators in $\mathcal{N}=4$ SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators?
[Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^{2}$ and new geometries
- Large powers $\sim N$ of determinants $\sim N \Longrightarrow$ Multi-matrix models
- How to twist SUGRA black hole solutions?
- Stokes phenomena and summing over brane $\sim N$ and geometry $\sim N^{2}$ saddles

Future directions

- Determinant modifications give families(N) of BPS operators in $\mathcal{N}=4$ SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators?
[Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^{2}$ and new geometries
- Large powers $\sim N$ of determinants $\sim N \Longrightarrow$ Multi-matrix models
- How to twist SUGRA black hole solutions?
- Stokes phenomena and summing over brane $\sim N$ and geometry $\sim N^{2}$ saddles
- Holographic dictionary for non-commutative BCOV (backreacted D3-branes)

Future directions

- Determinant modifications give families (N) of BPS operators in $\mathcal{N}=4$ SYM (and BMN subsector). Do they account for some fortuitous/non-multigraviton operators?
[Chang, Lin '22 '24] [Choi, Kim, Lee, Lee, Park '23] [Choi, Choi, Kim, Lee, Lee '23]
- Operators $\sim N^{2}$ and new geometries
- Large powers $\sim N$ of determinants $\sim N \Longrightarrow$ Multi-matrix models
- How to twist SUGRA black hole solutions?
- Stokes phenomena and summing over brane $\sim N$ and geometry $\sim N^{2}$ saddles
- Holographic dictionary for non-commutative BCOV (backreacted D3-branes)

Thank you!

