Light ray operators, detectors, and energy correlators

David Simmons-Duffin

Caltech

June 6, 2024

Two questions about Lorentzian QFT

- What can we measure at null infinity?
- How do correlators behave at large boost?

Both questions will lead us to the notion of a light-ray operator.

Kinematics of non-integer spin

Light-ray operators in CFT transform like primaries with non-integer spin.

- For a local operator, we can use index-free notation

$$
\mathcal{O}(x, z) \equiv \mathcal{O}_{\mu_{1} \ldots \mu_{J}}(x) z^{\mu_{1}} \cdots z^{\mu_{J}} \quad \longleftarrow \quad \text { polynomial with degree } J
$$

- To describe an operator with non-integer spin, we drop the polynomial requirement and allow general homogeneity

$$
\mathbb{O}(x, \lambda z)=\lambda^{J_{L}} \mathbb{O}(x, z) \quad J_{L} \in \mathbb{C}
$$

- $\mathbb{O}(x, z)$ is labeled by a spacetime point x and a null direction z.
- Every \mathbb{O} has a "spin-shadow" related by $J_{L} \leftrightarrow 2-d-J_{L}$

$$
\mathbf{S}[\mathbb{O}](x, z)=\int D^{d-2} z^{\prime}\left(-2 z \cdot z^{\prime}\right)^{2-d-J_{L}} \mathbb{O}(x, z)
$$

Example: light-transform [Kavachuk, DSD 18]

The light-transform of a local operator \mathcal{O} is a null integral starting from x in the direction of z :

$$
\mathbf{L}[\mathcal{O}](x, z)=\int_{-\infty}^{\infty} d \alpha(-\alpha)^{-\Delta-J} \mathcal{O}\left(x-\frac{z}{\alpha}, z\right)
$$

- $\mathbf{L}[\mathcal{O}]$ transforms like a primary with $\left(\Delta_{L}, J_{L}\right)=(1-J, 1-\Delta)$.
- Setting $x=\infty$ with $z=(1, \vec{n})$ gives integral along \mathscr{I}^{+}, at a point \vec{n} on the celestial sphere. Under the Lorentz group, it behaves like a primary on S^{d-1} with dimension $-J_{L}$. This is a kind of "detector."

The ANE(C) operator

- In flat-space CFT, the ANEC operator is the light-transform of the stress tensor $\mathbf{L}[T]$ [Hofman, Maldacena '08]
- Placing x at spatial infinity, we get an integral of T along \mathscr{I}^{+}which measures the flux of energy in the direction \vec{n}

$$
\mathcal{E}(\vec{n})=\left.2 \mathbf{L}[T](\infty, z)\right|_{z=(1, \vec{n})}
$$

In a general QFT,

$$
\mathcal{E}(\vec{n})=\lim _{r \rightarrow \infty} r^{2} \int d t n^{i} T^{0}{ }_{i}(t, r \vec{n})
$$

- $\mathcal{E}(\vec{n})$ is a generator of a BMS algebra [Cordova, Shao ' 18]
- ANEC: $\mathbf{L}[T]$ is positive
- Two proofs: quantum information [Faulkner, Leigh, Parrikar, Wang '16], causality [Hartman, Kundu, Tajdini '16]
- Many applications: OPE bounds, operator dimension bounds, QNEC, a-theorem [Hofman, Maldacena '08; Cordova, Diab '17; Cordova, Maldacena, Turiaci '17; Ceyhan, Faulkner '18; Hartman, Mathys '23; ...]

Energy correlators [Basham, Brown, Ellis, Love '78]

$$
\frac{\langle\Psi| \mathcal{E}\left(\vec{n}_{1}\right) \cdots \mathcal{E}\left(\vec{n}_{k}\right)|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\sum_{i_{1}, \ldots, i_{k}} \int d \sigma \prod_{j=1}^{k} E_{i_{j}} \delta\left(\vec{n}_{j}-\vec{p}_{i_{j}} / p_{i_{j}}^{0}\right)
$$

- Measures correlations between flux of energy in different directions \vec{n}_{j} on the celestial sphere, in some state $|\Psi\rangle$.
- IR safe [Kinoshita '62; Lee, Nauenberg ' ${ }^{64]}$], under good theoretical control. Can be computed via amplitudes and/or correlation functions.
- Calculations in QCD and $\mathcal{N}=4 \mathrm{SYM}$ [Hofman, Maldacena '08; Belitisky,

```
    Hohenegger, Korchemsky, Sokatchev, Zhiboedov '13; Dixon, Luo, Shtabovenko, Yang, Zhu '18; Luo,
```

 Shtabovenko, Yang, Zhu '19; Henn, Sokatchev, Yan, Zhiboedov '19; Chen, Luo, Moult, Yang,
 Zhang, Zhu '20; Chicherin, Korchemsky, Sokatchev, Zhiboedov '23 ...]
 - (Related calculations in classical gravity [Kosower, Maybee, O'Connell '18; ...])
- Experimentally measurable. Can cleanly access lots of different physics: jet substructure, top mass, QGP... [Komiske, Moult, Thaler, Zhu '22;
Holguin, Moult, Pathak, Procura '22; Chen, Moult, Thaler, Zhu '22; Lee, Mecaj, Moult '22, ...], and...

CMS determination of α_{s} from $\langle\mathcal{E E} \mathcal{E}\rangle /\langle\mathcal{E} \mathcal{E}\rangle_{\text {[cms '24] }}$

Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_{\mathrm{S}}\left(m_{\mathrm{Z}}\right)$

The CMS Collaboration*

Abstract

Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of $\sqrt{s}=13 \mathrm{TeV}$ proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of $36.3 \mathrm{fb}^{-1}$. The measured distributions reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the two measured distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-toleading order calculation, the strong coupling is determined at the Z boson mass: $\alpha_{\mathrm{S}}\left(m_{\mathrm{Z}}\right)=0.1229_{-0.0050}^{+0.0000}$, the most precise $\alpha_{\mathrm{S}}\left(m_{\mathrm{Z}}\right)$ value obtained using jet substructure observables.

What can we measure at null infinity?

- $\mathcal{E}\left(\vec{n}_{1}\right) \cdots \mathcal{E}\left(\vec{n}_{k}\right)$ is a kind of multi-point light-ray/light-cone operator
- What else can we measure? What kinds of detectors \mathcal{D} exist?
- Can we understand the space of detectors in terms of basic components, like we understand local operators in CFT?

- Can we decompose $\mathcal{E}\left(\vec{n}_{1}\right) \cdots \mathcal{E}\left(\vec{n}_{k}\right)$ and other detectors into basic components (light-ray OPE)?

What can we measure at null infinity?

Interesting example: CFT coupled to gravity.

- This theory does not have local correlation functions or scattering amplitudes.
- What are the observables?
- It should have detectors whose event shapes we can measure $\langle\mathrm{BH}-\mathrm{BH}| \mathcal{D}|\mathrm{BH}-\mathrm{BH}\rangle$.
- A holographic theory of flat space should know about these detectors.

Detectors in free scalar theory

- In the free scalar theory,

$$
\mathcal{E}(z)=\mathbf{L}[T](\infty, z)=\int_{0}^{\infty} d E E^{d-2} a^{\dagger}(E z) a(E z)
$$

It counts particles weighted by E.

- More generally, we can measure

$$
\mathcal{E}_{J}(z)=\int_{0}^{\infty} d E E^{d+J-4} a^{\dagger}(E z) a(E z)
$$

which counts particles weighted by E^{J-1}.

- For integer $J, \mathcal{E}_{J}=\mathbf{L}\left[\mathcal{O}_{J}\right]$ with $\mathcal{O}_{J}=\phi \partial^{J} \phi$.
- But since E is positive, we can also let $J \in \mathbb{C}$. This gives the leading Regge trajectory of the free theory.
- Can write \mathcal{E}_{J} as a bilocal integral along a null ray

$$
\mathcal{E}_{J}(z)=\frac{1}{\Gamma(-J)} \int d \alpha_{1} d \alpha_{2} \frac{1}{\left|\alpha_{1}-\alpha_{2}\right|^{J+1}} \phi\left(\alpha_{1} ; z\right) \phi\left(\alpha_{2} ; z\right)
$$

Renormalizing detectors

- When we turn on interactions, \mathcal{E}_{J} is no longer IR/collinear safe. Splitting conserves E, but not E^{J-1}.
- Manifests as IR/collinear divergences in perturbation theory.
- The theory is telling us that the bare \mathcal{E}_{J} is not a "good" observable. Need to renormalize it to find out what the "good" observables are.

local operator	detector
"measure at a point"	"measure in cross-sections"
UV divergence	IR divergence
need to renormalize	need to renormalize
theory-dependent	theory-dependent
OPE	light-ray OPE
radial quantization	$?$

- Renormalized detectors give an operator definition of IR safe weighted cross-sections. (Can we do the same for amplitudes?)

Chew-Frautschi plot in the Wilson-Fisher theory [Caron-Huot, Koloğul

Kravchuk, Meltzer, DSD '22]

- Turn on interactions: \mathcal{E}_{J} mixes/recombines with its shadow!
- It turns out there is no invariant distinction between "light-ray" and "light-cone" operators.
- $\gamma_{\phi \partial^{J} \phi}=-\frac{\epsilon^{2}}{9 J(J+1)}$ (2-loop) vs. $\gamma_{\phi^{2}}=\frac{2 \epsilon}{3}$ (1-loop) [Caron-Huot; Alday, Henriksson, van Loon '17]

CF plot in planar $\mathcal{N}=4 \mathrm{SYM}$

[Brower, Polchinski, Strassler, Tan '06]

- "Twist-2" sector is closed in the planar limit.
- When interactions are turned on, the 45° DGLAP trajectory mixes with the horizontal BFKL trajectory, forming a smooth Riemann surface. [Kurrev, Lipatov, Fadin '77; Balitsky, Lipatov '78; Braun, Korchemsky, Mueller '03; ..]
- BPST understood the surface at strong coupling by constructing a Regge trajectory of vertex operators in the bulk string theory.
- Shape now known exactly at finite λ from integrability [Alfimov, Gromov,

What is a BFKL trajectory?

$$
\int d \vec{n}_{1} d \vec{n}_{2}\left(\frac{1-\vec{n}_{1} \cdot \vec{n}_{2}}{\left(1-\vec{n}_{1} \cdot \vec{n}\right)\left(1-\vec{n}_{2} \cdot \vec{n}\right)}\right)^{\frac{\Delta-1}{2}} \int d \alpha_{i} K\left(\alpha_{i}\right)
$$

- Integral of $F_{\mu \nu}$'s along Wilson lines stretched along $\stackrel{i^{-}}{\mathscr{I}^{+}}$.
- $\int d \vec{n}_{1} d \vec{n}_{2}(\cdots)$ projects onto Lorentz irrep with spin $J_{L}=1-\Delta$.
- $\Delta_{L}=1-J=0$ is fixed (at tree level). Varying Δ, we trace a horizontal trajectory on the Chew-Frautschi plot at $J=1$.
- Can add more Wilson lines to get infinitely more trajectories at $J=1$. When we turn on the coupling, they mix in an intricate way (Balitsky-JIMWLK evolution). [Mueller, Patel, Balitsky, Kovchegov, Jalilian-Marian,

Large boost: "light rays" in 1d

$$
\text { OTOC : }\left\langle W\left(\frac{\beta}{2}+i t\right) V\left(\frac{\beta}{2}\right) W(i t) V(0)\right\rangle
$$

The scramblon/Pomeron is the fastest-growing part at large t. It is an intrinsically 2 -sided operator associated to the gray points (1d "light ray")

$$
e^{K t}\left\{W_{L} W_{R}\right\} \sim e^{\lambda_{\star} t} \mathbb{S}+\ldots
$$

"Inversion formula":

$$
\mathbb{O}_{\lambda} \equiv \int_{0}^{\infty} d t e^{-\lambda t} e^{K t}\left\{W_{L} W_{R}\right\} \quad \Longrightarrow \quad \mathbb{O}_{\lambda} \sim \frac{1}{\lambda-\lambda_{\star}} \mathbb{S}+\ldots
$$

OTOC \rightarrow a matrix element of $\mathbb{S}:[K i t a v e$; Maldacena, Qi '18; Stanford, Lin '23, ..]

$$
\mathrm{OTOC}=e^{\lambda_{*} t}\left\langle V_{L}\right| \mathbb{S}\left|V_{R}\right\rangle+\ldots
$$

Conformal Regge theory [Costa, Gonalves, Penedones 12; Cron-HLuot 17, Kravchuk, DSD 1.8]

In the Regge limit, the correlator becomes a matrix element of a "Pomeron" operator

$$
\left\langle\mathcal{O}_{4} \mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle \sim e^{\left(J_{\star}-1\right) t}\left\langle\mathcal{O}_{4}\right| \operatorname{Res}_{J=J_{\star}} \mathbb{O}_{\frac{d}{2}, J}\left|\mathcal{O}_{3}\right\rangle
$$

The Pomeron can be extracted from

$$
\mathbb{O}_{\Delta, J}(x, z)=\int d x_{1} d x_{2} K_{\Delta, J}\left(x_{1}, x_{2}, x, z\right) \mathcal{O}_{1} \mathcal{O}_{2}
$$

Residue localizes the integral to a neighborhood of a null plane. Intuitively, the Pomeron is a 2-sided operator in "angular/Rindler quantization." [Agia, Jafferis '22]

The light-ray kernel [Kavchuk, DSD '18]

(Some? all?) light-ray operators are packaged together by

$$
\mathbb{O}_{\Delta, J}(x, z)=\int d x_{1} d x_{2} K_{\Delta, J}\left(x_{1}, x_{2}, x, z\right) \mathcal{O}_{1} \mathcal{O}_{2}
$$

- $\mathbb{O}_{\Delta, J}$ transforms like a primary with $\left(\Delta_{L}, J_{L}\right)=(1-J, 1-\Delta)$, but Δ and J can be complex.
- Conjecturally, the poles occur at a Riemann surface in the $\Delta-J$ plane, with residues being light-ray operators.

$$
\mathbb{O}_{\Delta, J} \sim \sum_{i} \frac{\mathbb{O}_{i, J}}{\Delta-\Delta_{i}(J)}
$$

- The kernel is constructed so that at integer $J, \mathbb{O}_{i, J}=\mathbf{L}\left[\mathcal{O}_{\Delta_{i}, J}\right]$.
- The light-ray operator at $\Delta=\frac{d}{2}$ with largest J is the Pomeron.
- Setting $x=\infty$ gives a class of detectors $\mathcal{D}_{i, J}(z)=\mathbb{O}_{i, J}(\infty, z)$.

The light-ray OPE

- Light-ray operators appear in $\mathcal{E}\left(\vec{n}_{1}\right) \times \mathcal{E}\left(\vec{n}_{2}\right)$ OPE $\left(\vec{n}_{1} \rightarrow \vec{n}_{2}\right)$. [Hofman, Maldacena '08]
- General statement in CFT [Chang, Koloğlu, Kravchuk, DSD, Zhiboedov '20]

$$
\begin{gathered}
\mathcal{E} \times \mathcal{E}=\sum_{i} \sum_{i=0.2 .4} \mathbb{O}_{i, J=3, j}^{+}+\sum_{n, i} \mathcal{D}_{2 n} \mathbb{O}_{i, J=3+2 n, j=4} \\
\underbrace{}_{j=0,2,4,0,2,4}
\end{gathered}
$$

Proof at the level of kernels: relating $\mathbf{L}[\cdots] \mathbf{L}[\cdots]$ to $K_{\Delta, J}$. [NB: Cannot do $\mathcal{O}_{1} \times \mathcal{O}_{2}$ OPE inside the integral - it doesn't converge.]

- Derivations of leading term [Dixon, Moult, Zhu '19; Korchemsky '19]. Light-ray OPE \Longrightarrow "factorization theorem" for $\langle\mathcal{E E}\rangle$ [Chen '23]
- General OPE for $\mathbb{O}_{1} \times \mathbb{O}_{2}$ currently unknown... Perturbative explorations: [Chen, Moult, Sandor, Zhu '22; Chang, DSD '22; Yan, Zhang '22; Chicherin,

Mysteries of the Chew-Frautschi plot: Higher twist

- Twist > 2 operators: number of local operators grows with spin.
- Infinite number of smooth Regge trajectories, but their matrix elements develop zeros in precise pattern. [Homrich, DSD, Vieira '22; Klabbers, Preti, Szécsényi '23]
- General mechanism explained in [Henrikson, Kravchuk, Oertel '23]. Involves an interesting light-ray "two-point function" [Caron-Huot '13]

$$
\left\langle T\left\{\mathbb{O}_{1} \mathbb{O}_{2}\right\}\right\rangle
$$

Mysteries of the Chew-Frautschi plot: finite N

- What is this structure supposed to look like at finite λ and finite N ? Do Regge trajectories unify into a single surface?
- Leading $\log N / N$ correction to $\langle\mathcal{E E}\rangle$ at large λ : [Chen, KarIsson, Zhiboedov '24]

Some open questions

- How do you measure a general detector operator at a collider?
- Can we measure detectors in a condensed matter system?
- Can we formulate EFT running and matching for detectors? (Could help organize understanding of confinement effects in $\langle\mathcal{E} \cdots \mathcal{E}\rangle$ [Jaarsma, Li, Moult, Waalewijn, Zhu '23; Csaki, Ismail '24].)
- What does the Chew-Frautschi plot look like at finite λ and finite N ?
- Can we find positivity/rigidity conditions for light-ray operators? Can we formulate bootstrap conditions?
- What behavior in the deep Regge limit is possible? Transparency vs. chaos? [Stanford '15; Murugan, Stanford, Witten '17; Caron-Huot, Gobeil, Zahree '20]
- Are other Lorentzian singularities described by other types of operators?
- Does "factorization theorem" $=$ OPE? [Chen '23]
- What is the general form of the light-ray OPE?
- How are light-ray operators and conformal line defects related?
- Do light-ray operators participate in interesting algebras?

