Large N gauge theories and their confining strings

- what the lattice tells us.

$$
\text { Michael Teper (Oxford) - Strings } 2024
$$

- $S U(\infty)$ is close to $S U(3)$
- Confining flux tube - world sheet action

Is $S U(3)$ close to $S U(\infty)$?
calculate dimensionless ratios of physical quantities for various $S U(N \geq 2)$
extrapolate to $S U(\infty)$ using the leading $O\left(1 / N^{2}\right)$ correction:

$$
\left.\frac{M_{G}}{\mu}\right|_{N}=\left.\frac{M_{G}}{\mu}\right|_{\infty}+\frac{c}{N^{2}}
$$

e.g. M_{G} a glueball mass, and $\mu=\sqrt{ } \sigma$ square root string tension
some $N \rightarrow \infty$ extrapolations: scalar glueballs for $2 \leq N \leq 12$

$J^{P C}=0^{++}$ground (•) and first excited (■); 0^{-+}ground (o) and first excited (\square) in units of the string tension. With extrapolations to $N=\infty$ from $N=2-12$.
the above $M / \sqrt{ } \sigma$ values are those of the continuum theories, i.e after taking the lattice spacing $a \rightarrow 0$ in physical units
e.g. $a \sqrt{ } \sigma \rightarrow 0$
extrapolate to $a=0$ using the leading $O\left(a^{2}\right)$ correction:

$$
\frac{a M_{G}(a)}{a \sqrt{ } \sigma(a)}=\frac{M_{G}(a)}{\sqrt{ } \sigma(a)}=\frac{M_{G}(0)}{\sqrt{ } \sigma(0)}+c a^{2} \sigma
$$

where we vary the lattice spacing a by varying the value of g^{2} in the lattice action, and calculate masses in lattice units from correlators:

$$
\left.\left\langle\phi^{\dagger}\left(t=a n_{t}\right) \phi(0)\right\rangle=\sum_{n}|\langle v a c| \phi| n\right\rangle\left.\right|^{2} \exp \left\{-a E_{n} n_{t}\right\}
$$

e.g. $\mathrm{SU}(4)$: some continuum extrapolations

$A_{1}^{++} \rightarrow 0^{++}(\bullet), E^{++} \rightarrow 2^{++}(\diamond)$ and $T_{2}^{++} \rightarrow 2^{++}(\diamond)$.
NOTE: doublet $E^{++}+$triplet $T_{2}^{++} \longrightarrow$ five components of $J^{P C}=2^{++}$glueball
lattice rotation irreps $A_{1}, A_{2}, E, T_{1}, T_{2}$ dimensions $1,1,2,3,3$
\longrightarrow continuum rotation irreps J dimension $2 J+1$

continuum $J \sim \operatorname{cubic} R$		
J		cubic R
0	\sim	A_{1}
1	\sim	T_{1}
2	\sim	$E+T_{2}$
3	\sim	$A_{2}+T_{1}+T_{2}$
4	\sim	$A_{1}+E+T_{1}+T_{2}$
5	\sim	$E+2 T_{1}+T_{2}$
6	\sim	$A_{1}+A_{2}+E+T_{1}+2 T_{2}$
7	\sim	$A_{2}+E+2 T_{1}+2 T_{2}$
8	\sim	$A_{1}+2 E+2 T_{1}+2 T_{2}$

e.g. identifying some $J^{P C}=0^{++}, 2^{++}$states in $S U(3)$

continuum masses in units of string tension					
state	A_{1}^{++}	A_{2}^{++}	E^{++}	T_{1}^{++}	T_{2}^{++}
gs :	$3.405(21)$	$7.705(85)$	$4.904(20)$	$7.698(80)$	$4.884(19)$
ex1:	$5.855(41)$	$8.81(20)$	$6.728(47)$	$7.72(11)$	$6.814(31)$

$A_{1}^{++} g s$ and ex1 no near-matching E, T_{1}, T_{2} states $\Rightarrow J^{P C}=0^{++}$ same for $E,{ }^{++} T_{2}^{++} g s$ and $e x 1 \Rightarrow J^{P C}=2^{++}$

$$
\mathrm{SU}(8), 20^{3} 30, a \sqrt{ } \sigma=0.1325
$$

$l_{f} * ; J^{P C}=0^{++}\left(A_{1}^{++}\right) \bullet ; 2^{++}\left(E^{++}\right) \circ ; 0^{-+}\left(A_{1}^{-+}\right) \triangle ; 1^{+-}\left(T_{1}^{+-}\right) \diamond$
extrapolation of continuum $T_{c} / \sqrt{ } \sigma$ to $N=\infty$:

$S U(2) 2$ nd order; $S U(3)$ weakly 1st order; $S U(N \geq 4)$ 1st order data from $1202.6684, \bullet$, and hep-lat/0502003, o (slight shift for clarity)
continuum topological susceptibility $\chi_{L}=\left\langle Q_{L}^{2}\right\rangle /$ volume vs N

So, is $S U(3)$ is 'close' to $S U(\infty)$?
lattice answer: Yes.

And if we add light quarks? Probably so, at least in quenched calculations, but need to do better. 1304.4437
but full $Q C D_{N}$ would be very useful for phenomenology and theory

Winding flux tube spectrum from string action

Spectrum of a flux tube wrapped around the x-torus, length l, propagating in (Euclidean) time \Longrightarrow effective string action.
Light cone quantisation of bosonic string \Longrightarrow Nambu-Goto/GGRT spectrum:

$$
E_{n}(l)=\sigma l\left(1+\frac{8 \pi}{\sigma l^{2}}\left(n-\frac{(D-2)}{24}\right)\right)^{\frac{1}{2}}
$$

where $n=\left(N_{L}+N_{R}\right) / 2=N_{R}=N_{L}$.

Outside $D=26$ (and $D=3$) this LC quantisation leads to anomalous rotation commutators - at 'short' distances - so not whole story

Note also that the ground state becomes tachyonic for $\sigma l^{2} \leq \pi(D-2) / 3$
winding flux tube spectrum: $S U(6)$ in $D=2+1$

at $\beta=171$ - corresponding to $a \sqrt{ } \sigma_{f} \simeq 0.086$. Solid lines are NG(GGRT) string spectrum.

Universal part of spectrum

A flux tube wrapped around the x-torus (length l) propagating around the (Euclidean) time torus length τ) sweeps out a simple 2-torus surface if we are in the large- N limit where handles and higher genus surfaces are suppressed. Let $S_{e f f}[S]$ be the world-sheet effective action, and $Z_{\text {torus }}(l, \tau)$ the path integral. Then

$$
Z_{t o r u s}(l, \tau)=\int_{T^{2}=l \times \tau} d S e^{-S_{e f f}[S]}=\sum_{n, p} e^{-E_{n}(p, l) \tau}
$$

with $E_{n}(p, l)$ the energy of the n 'th flux tube state of length l, momentum p.

The bulk symmetries constrain the $E_{n}(p, l)$ and hence the action $S_{\text {eff }}[S]$. This leads to some universal terms:

$$
\frac{E_{n}(l)}{\sqrt{ } \sigma} \stackrel{l \rightarrow \infty}{=} l \sqrt{ } \sigma+\frac{c_{1}^{N G}}{l \sqrt{ } \sigma}+\frac{c_{2}^{N G}}{(l \sqrt{ } \sigma)^{3}}+\frac{c_{3}^{N G}}{(l \sqrt{ } \sigma)^{5}}+O\left(\frac{1}{l^{7}}\right)
$$

where $c_{i}^{N G}$ are identical to those that arise in the expansion of E in powers of $1 / l$ in the Nambu-Goto spectrum above.

[^0]black lines are contribution of universal terms to spectrum

at $\beta=171$ - corresponding to $a \sqrt{ } \sigma_{f} \simeq 0.086$. Purple lines are NG spectrum.

Why?

expansion parameter is

$$
\frac{8 \pi}{\sigma l^{2}}\left(n-\frac{(D-2)}{24}\right)
$$

and for $n>0$ oscillating terms \Longrightarrow universal terms 'blow up' for

$$
l \sqrt{ } \sigma \lesssim \sqrt{ }(8 \pi(n-(D-2) / 24) \stackrel{n>0}{\gg 1}
$$

where $E_{n}(l)$ becomes large and we lose our lattice calculations
\Longrightarrow
carry out test of universality fot $n=0$, i.e. the ground state

Is the leading non-universal correction $\left.O 1 / l^{7}\right)$ in $S U(4), D=2+1 ?: 1602.07634$

$$
\frac{E_{0}-E_{0}^{N G}}{\sigma_{f} l}
$$

$\mathrm{SU}(4) k=1$ ground state energy: Nambu-Goto plus a $O\left(1 / l^{7}\right)$. Vertical line \sim deconfining transition.

Flux tube ground state energy $=E_{0}^{N G}(l)+O\left(1 / l^{\gamma}: S U(4) \quad 1602.07634\right.$

Best fits to $\mathrm{SU}(4) k=1$ ground state energy using Nambu-Goto with a $O\left(1 / l^{\gamma}\right)$ correction: p-value for all $l \in[13,60]$, \bullet, and for $l \in[13,18]$, o, versus γ.
$S U(2), D=2+1$: NG tachyonic transition not shielded by deconfinement 1602.07634

at $\beta=16$ - left of light vertical line $E_{0}^{N G}$ is tachyonic (for \square we have set it to zero). Thick vertical line locates the deconfining transition.
why does the GGRT spectrum work so well - and what are corrections to it?

1404.0037

$$
E_{\mathrm{GGRT}}\left(N_{L}, N_{R}\right)=\sqrt{\frac{4 \pi^{2}\left(N_{L}-N_{R}\right)^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N_{L}+N_{R}-\frac{D-2}{12}\right)},
$$

no particle production, and $2 \rightarrow 2$ phonon phase shift: $2 \delta(s)=s l_{s}^{2} / 4$
$\Longrightarrow \quad$ momenta and pseudoenergies (TBA):

$$
\begin{aligned}
& p_{l i} R+\sum_{j} 2 \delta_{a_{i} a_{j}}\left(p_{l i}, p_{r j}\right)-i \sum_{b} \int_{0}^{\infty} \frac{d q}{2 \pi} \frac{d 2 \delta_{a_{i} b}\left(i p_{l i}, q\right)}{d q} \ln \left(1-e^{-R \epsilon_{r}^{b}(q)}\right)=2 \pi N_{l i}, \\
& \epsilon_{l}^{a}(q)=q+\frac{i}{R} \sum_{i} 2 \delta_{a b_{i}}\left(q,-i p_{r i}\right)+\frac{1}{2 \pi R} \sum_{b} \int_{0}^{\infty} d q^{\prime} \frac{d 2 \delta_{a b}\left(q, q^{\prime}\right)}{d q^{\prime}} \ln \left(1-e^{-R \epsilon_{r}^{b}\left(q^{\prime}\right)}\right),
\end{aligned}
$$

$\Longrightarrow \quad$ state energy
$\Delta E=\sum_{i} p_{l i}+\sum_{i} p_{r i}+\frac{1}{2 \pi} \sum_{a} \int_{0}^{\infty} d q \ln \left(1-e^{-R \epsilon_{l}^{a}(q)}\right)+\frac{1}{2 \pi} \sum_{a} \int_{0}^{\infty} d q \ln \left(1-e^{-R \epsilon_{r}^{a}(q)}\right)$.
$S U(6), k=1$, parity $=+$ flux tube
spectrum: $\quad \Delta E(R)=E(R)-\sigma R, \sigma=1 / l_{s}^{2}$
\Longrightarrow
lines GGRT; deviations at low R; some degeneracy breaking
energies $\xrightarrow{T B A}$ phonon-phonon phase shifts δ
close to $2 \delta_{G G R T}=l_{s}^{2} s / 4$ but some deviation
use modified phase shift $\delta=\delta_{G G R T}+\gamma_{3} l_{s}^{6} s^{3}$ in TBA with lattice $E_{i} \longrightarrow \gamma_{3} \simeq 0.7(1) /(2 \pi)^{2}$

Something different: $k=3 A$ flux tube in $S U(6)$: massive mode?

a bulk or a world-sheet excitation?
apply same technology to $S U(6), k=3 A$, parity=+ flux tube spectrum, where we saw evidence of a massive mode
phase shift has classic resonance shape
massive resonance: $\quad m=1.74 / l_{s}^{3 A}, \Gamma=0.16 / l_{s}^{3 A}$
about half the bulk mass gap, and similar to $D=3+1$ axion mass
1404.0037

$$
D=2+1 \quad \longrightarrow \quad D=3+1
$$

more quantum numbers; spin around axis

GGRT spectrum very good approximation except for the 0^{--}
1702.03717

$$
0^{--} \text {massive mode } \longrightarrow \text { 'axion' on world sheet }
$$

Add to world sheet action an axion ϕ :

$$
S_{\phi}=\int d^{2} \sigma \sqrt{-h}\left(-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}+\frac{Q_{\phi}}{4} h^{\alpha \beta} \epsilon_{\mu \nu \lambda \rho} \partial_{\alpha} t^{\mu \nu} \partial_{\beta} t^{\lambda \rho} \phi\right)
$$

with

$$
t^{\mu \nu}=\frac{\epsilon^{\alpha \beta}}{\sqrt{-h}} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}
$$

i.e. the axion is coupled to the self-intersection number of the world sheet 1404.0037

Integrability?

In $D=4$ Goldstone bosons + massless axion with coupling $Q_{\phi}=\sqrt{ } 7 / 16 \pi \simeq 0.373$
world-sheet integrability 1511.01908

Our axion: $\quad Q_{\phi}=0.38(4)$ but $\quad m \simeq 1.85(3) l_{s}^{-1}$
maybe $m \rightarrow 0$ as $N \rightarrow \infty$?
No: remains massive as $N \rightarrow \infty: S U(N), N \in[2,12], D=3+1$ 1702.03717

Axion remains massive as $N \rightarrow \infty: S U(N), N \in[2,12], D=3+11702.03717$

Some Conclusions

- physical quantities of the $S U(\infty)$ gauge theory can be calculated quite precisely - and indeed $N=3$ is 'close to' $N=\infty$
- confining flux tubes are well described by the Nambu-Goto string action in both $D=2+1$ and $D=3+1 S U(N)$ gauge theories - except for the interesting presence of a massive world-sheet axion particle in $D=3+1$ - with the deconfinement of the gauge theory protecting the theory from becoming tachyonic at very small lengths
- the parallel theoretical work on the universal terms of the world-sheet action, especially relevant for long strings, and of the corrections to Nambu-Goto confining flux tubes, using the TBA formalism, especially relevant to shorter strings, provides a very nice example of a positive symbiosis between hep-lat and hep-th.

[^0]: Luscher, Weisz hep-th/0406205; Aharony,Komargodski 1302.6257; Dubovsky,Flauger, Gorbenko
 1404.0037

