
Large N gauge theories and their confining strings

– what the lattice tells us.

Michael Teper (Oxford) - Strings 2024

• SU(∞) is close to SU(3)

• Confining flux tube – world sheet action
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Is SU(3) close to SU(∞)?

calculate dimensionless ratios of physical quantities for various SU(N ≥ 2)

extrapolate to SU(∞) using the leading O(1/N2) correction:
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e.g. MG a glueball mass, and µ =
√
σ square root string tension

calculations from 2106.00364
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some N → ∞ extrapolations: scalar glueballs for 2 ≤ N ≤ 12
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JPC = 0++ ground (•) and first excited (�); 0−+ ground (◦) and first excited (�) in

units of the string tension. With extrapolations to N = ∞ from N = 2 − 12.
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the above M/
√
σ values are those of the continuum theories, i.e after taking the

lattice spacing a → 0 in physical units

e.g. a
√
σ → 0

extrapolate to a = 0 using the leading O(a2) correction:

aMG(a)

a
√
σ(a)

=
MG(a)√

σ(a)
=

MG(0)√
σ(0)

+ ca2σ

where we vary the lattice spacing a by varying the value of g2 in the lattice

action, and calculate masses in lattice units from correlators:

〈φ†(t = ant)φ(0)〉 =
∑

n

|〈vac|φ|n〉|2 exp{−aEnnt}
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e.g. SU(4): some continuum extrapolations

a2σ

MJ++
√

σ
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A++
1 → 0++ (•), E++ → 2++ (�) and T++

2 → 2++ (♦).

NOTE: doublet E++ + triplet T++
2 −→ five components of JPC = 2++ glueball
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lattice rotation irreps A1, A2, E, T1, T2 dimensions 1, 1, 2, 3, 3

−→ continuum rotation irreps J dimension 2J + 1

continuum J ∼ cubic R

J cubic R

0 ∼ A1

1 ∼ T1

2 ∼ E + T2

3 ∼ A2 + T1 + T2

4 ∼ A1 + E + T1 + T2

5 ∼ E + 2T1 + T2

6 ∼ A1 + A2 + E + T1 + 2T2

7 ∼ A2 + E + 2T1 + 2T2

8 ∼ A1 + 2E + 2T1 + 2T2
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e.g. identifying some JPC = 0++, 2++ states in SU(3)

continuum masses in units of string tension

state A++
1 A++

2 E++ T++
1 T++

2

gs : 3.405(21) 7.705(85) 4.904(20) 7.698(80) 4.884(19)

ex1: 5.855(41) 8.81(20) 6.728(47) 7.72(11) 6.814(31)

A++
1 gs and ex1 no near-matching E, T1, T2 states ⇒ JPC = 0++

same for E,++ T++
2 gs and ex1 ⇒ JPC = 2++
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SU(8) , 20330 , a
√
σ = 0.1325

nt

C(nt)

14131211109876543210
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1 ) • ; 2++(E++) ◦ ; 0−+(A−+

1 ) △ ; 1+−(T+−

1 ) �
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extrapolation of continuum Tc/
√
σ to N = ∞:
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SU(2) 2nd order; SU(3) weakly 1st order; SU(N ≥ 4) 1st order

data from 1202.6684, •, and hep-lat/0502003, ◦ (slight shift for clarity)
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continuum topological susceptibility χL = 〈Q2
L〉/volume vs N
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χ|su3 ≃ (206(4)‘MeV′)4 ; χ|su∞ ≃ (179(4)‘MeV′)4
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So, is SU(3) is ‘close’ to SU(∞)?

lattice answer: Yes.

And if we add light quarks? Probably so, at least in quenched calculations,

but need to do better. 1304.4437

but full QCDN would be very useful for phenomenology and theory
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Winding flux tube spectrum from string action

Spectrum of a flux tube wrapped around the x-torus, length l, propagating in

(Euclidean) time =⇒ effective string action.

Light cone quantisation of bosonic string =⇒ Nambu-Goto/GGRT spectrum:

En(l) = σl

(

1 +
8π

σl2

(

n− (D − 2)

24

)) 1
2

where n = (NL +NR)/2 = NR = NL.

Outside D = 26 (and D = 3) this LC quantisation leads to anomalous rotation

commutators – at ’short’ distances – so not whole story

Note also that the ground state becomes tachyonic for σl2 ≤ π(D − 2)/3
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winding flux tube spectrum: SU(6) in D = 2 + 1 1602.07634
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at β = 171 – corresponding to a
√
σf ≃ 0.086. Solid lines are NG(GGRT) string

spectrum.
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Universal part of spectrum

A flux tube wrapped around the x-torus (length l) propagating around the

(Euclidean) time torus length τ) sweeps out a simple 2-torus surface if we are in

the large-N limit where handles and higher genus surfaces are suppressed. Let

Seff [S] be the world-sheet effective action, and Ztorus(l, τ) the path integral.

Then

Ztorus(l, τ) =

∫

T2=l×τ

dSe−Seff [S] =
∑

n,p

e−En(p,l)τ

with En(p, l) the energy of the n’th flux tube state of length l, momentum p.

The bulk symmetries constrain the En(p, l) and hence the action Seff [S]. This

leads to some universal terms:

En(l)√
σ

l→∞
= l

√
σ +

cNG
1

l
√
σ

+
cNG
2

(l
√
σ)3

+
cNG
3

(l
√
σ)5

+O

(

1

l7

)

where cNG
i are identical to those that arise in the expansion of E in powers of

1/l in the Nambu-Goto spectrum above.

Luscher,Weisz hep-th/0406205; Aharony,Komargodski 1302.6257; Dubovsky,Flauger,Gorbenko

1404.0037
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black lines are contribution of universal terms to spectrum

l
√
σf

E√
σf

76543210

12

10

8

6

4

2

0

at β = 171 – corresponding to a
√
σf ≃ 0.086. Purple lines are NG spectrum.
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Why?

expansion parameter is
8π
σl2

(

n− (D−2)
24

)

and for n > 0 oscillating terms =⇒ universal terms ‘blow up’ for

l
√
σ .

√
(8π(n− (D − 2)/24)

n>0
≫ 1

where En(l) becomes large and we lose our lattice calculations

=⇒
carry out test of universality fot n = 0, i.e. the ground state
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Is the leading non-universal correction O1/l7) in SU(4), D = 2 + 1? : 1602.07634
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σf l
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SU(4) k = 1 ground state energy: Nambu-Goto plus a O(1/l7). Vertical line ∼
deconfining transition.
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Flux tube ground state energy = ENG
0 (l) +O(1/lγ : SU(4) 1602.07634
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Best fits to SU(4) k = 1 ground state energy using Nambu-Goto with a O(1/lγ)

correction: p-value for all l ∈ [13, 60], •, and for l ∈ [13, 18], ◦, versus γ.
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SU(2),D = 2 + 1: NG tachyonic transition not shielded by deconfinement

1602.07634
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at β = 16 – left of light vertical line ENG
0 is tachyonic (for � we have set it to

zero). Thick vertical line locates the deconfining transition.
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why does the GGRT spectrum work so well – and what are corrections to it?

1404.0037

EGGRT(NL, NR) =

√

4π2(NL −NR)2

R2
+

R2

ℓ4s
+

4π

ℓ2s

(

NL +NR − D − 2

12

)

,

no particle production, and 2 → 2 phonon phase shift: 2δ(s) = sl2s/4

=⇒ momenta and pseudoenergies (TBA):

pliR+
∑

j

2δaiaj (pli, prj)−i
∑

b

∫ ∞

0

dq

2π

d2δaib (ipli, q)

dq
ln

(

1− e−Rǫbr(q)
)

= 2πNli ,

ǫal (q) = q+
i

R

∑

i

2δabi (q,−ipri)+
1

2πR

∑

b

∫ ∞

0
dq′

d2δab (q, q
′)

dq′
ln

(

1− e−Rǫbr(q
′)
)

,

=⇒ state energy

∆E =
∑

i

pli+
∑

i

pri+
1

2π

∑

a

∫ ∞

0
dq ln

(

1− e−Rǫal (q)
)

+
1

2π

∑

a

∫ ∞

0
dq ln

(

1− e−Rǫar (q)
)

.
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SU(6), k = 1, parity=+ flux tube

spectrum: ∆E(R) = E(R)− σR, σ = 1/l2s

=⇒
lines GGRT; deviations at low R; some degeneracy breaking

energies
TBA−→ phonon-phonon phase shifts δ

close to 2δGGRT = l2ss/4 but some deviation

use modified phase shift δ = δGGRT + γ3l
6
ss

3 in TBA with lattice

Ei −→ γ3 ≃ 0.7(1)/(2π)2

1404.0037
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Something different: k = 3A flux tube in SU(6): massive mode? 1602.07634
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a bulk or a world-sheet excitation?
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apply same technology to SU(6), k = 3A, parity=+ flux tube spectrum,

where we saw evidence of a massive mode

=⇒

phase shift has classic resonance shape

massive resonance: m = 1.74/l3As , Γ = 0.16/l3As

about half the bulk mass gap, and similar to D = 3 + 1 axion mass

1404.0037
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D = 2 + 1 −→ D = 3 + 1

more quantum numbers; spin around axis

GGRT spectrum very good approximation except for the 0−−

1702.03717
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0−− massive mode −→ ‘axion’ on world sheet

Add to world sheet action an axion φ:

Sφ =

∫

d2σ
√
−h

(

−1

2
(∂φ)2 − 1

2
m2φ2 +

Qφ

4
hαβǫµνλρ∂αt

µν∂βt
λρφ

)

,

with

tµν =
ǫαβ

√
−h

∂αX
µ∂βX

ν .

i.e. the axion is coupled to the self-intersection number of the world sheet
1404.0037
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Integrability?

In D = 4 Goldstone bosons + massless axion with coupling
Qφ =

√
7/16π ≃ 0.373 =⇒

world-sheet integrability 1511.01908

Our axion: Qφ = 0.38(4) but m ≃ 1.85(3)l−1
s

maybe m → 0 as N → ∞?

No: remains massive as N → ∞: SU(N),N ∈ [2, 12], D = 3 + 1

1702.03717
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Axion remains massive as N → ∞: SU(N),N ∈ [2, 12], D = 3 + 1 1702.03717
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Some Conclusions

• physical quantities of the SU(∞) gauge theory can be calculated quite

precisely – and indeed N = 3 is ‘close to’ N = ∞

• confining flux tubes are well described by the Nambu-Goto string action in

both D = 2 + 1 and D = 3 + 1 SU(N) gauge theories – except for the interesting

presence of a massive world-sheet axion particle in D = 3 + 1 – with the

deconfinement of the gauge theory protecting the theory from becoming tachyonic

at very small lengths

• the parallel theoretical work on the universal terms of the world-sheet action,

especially relevant for long strings, and of the corrections to Nambu-Goto

confining flux tubes, using the TBA formalism, especially relevant to shorter

strings, provides a very nice example of a positive symbiosis between hep-lat and

hep-th.
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