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1. Overview of recent developments



Generalized Symmetry ”Revolution”

The identification that ”Topological defects in a QFT are global symmetry
generators” has hugely enlarged our horizon of what a global symmetry can
be:

1. Higher Symmetry Groups:
# Symmetries acting on extended operators
[Gaiotto, Kapustin, Seiberg, Willett, ’14]

# Higher-groups, such as extensions of higher-form symmetries
[Kapustin, Thorngren][Benini, Cordova, Hsin][Cordova, Dumitrescu, Intrilligator]

2. Non-invertible or Categorical Symmetries:
A non-invertible symmetry S satisfies composition ”fusion”: a, b ∈ S

a⊗ b = N1c1 ⊕ · · · ⊕Nkck , ci ∈ S , Ni ∈ N

⊗ and ⊕makes this akin to an algebra. There is extra data that makes it
into a fusion category.

# Long-history in 2d QFTs: [Fuchs, Runkel, Schweigert][Bhardwaj, Tachikawa][· · · ]

# Many constructions in d > 2 QFTs [Starting in ’21]

This has led to an avalanche of new results and exciting cross-fertilization
between hep-th, hep-ph, cond-mat, and math.



Two simple examples of Non-Invertible Symmetries in 2d

Transverse field Ising model: H = (C2)L with nearest neighbor Hamiltonian

H = −
∑
j

ZjZj+1 − g
∑
j

Xj .

There is a Z2 spin flip symmetry η =
∏

j Xj .

• g = 0: two ground states, | ↑L⟩ and | ↓L⟩: ”ordered phase”

• g≫ 1: ground state preserves the Z2: ”disordered phase”

• g = 1: critical Ising CFT at c = 1/2.

g

g = 0 g = 1

ordered

Is
in

g
C

FT

disordered

Kramers-Wannier duality:
Xi→ ZjZj+1 and ZjZj+1→ Xj+1, corresponds to g→ g−1.
At g = 1: symmetry of the critical Ising CFT, which realizes the non-invertible
defect:

N2 = 1+ η



Two simple examples of Non-Invertible Symmetries in 2d:

Ising fusion category:
Generators are 1, η, N , where η⊗ η = 1 is a Z2 group, and N ⊗ η = η⊗N = N ,
but N is non-invertible

N ⊗N = 1⊕ η .

N is the Kramers-Wannier self-duality of the critical Ising model.



Two simple examples of Non-Invertible Symmetries in 2d:

• Ising fusion category:
Generators are 1, η, N , where η⊗ η = 1 is a Z2 group, and
N ⊗ η = η⊗N = N , but N is non-invertible

N ⊗N = 1⊕ η .

N is the Kramers-Wannier self-duality of the critical Ising model.

• Representations of a finite non-abelian group G:
e.g. permutation group on 3 elements S3:

Rep(S3) = representations of S3 with the tensor product form a fusion category .

The generators are the irreducible representations:
the trivial (1), sign (U ) and 2d representation E, respectively, with tensor
product (fusion):

U ⊗U = 1 , E ⊗U = U ⊗E = E , E ⊗E = 1⊕U ⊕E .



Non-Invertible Symmetries in d = 4

• 4d Kramers-Wannier duality defects:
[Kaidi, Ohmori, Zheng][Choi, Cordova, Hsin, Lam, Shao]

QFT ∼= QFT/D ⇒ non-invertible 0-form symmetry

• Condensation defects from higher-gauging : [Roumpedakis, Seifnashri, Shao]

Cd ∼
∑

Σ∈Hq(Md,ZN )

ei
∫
Σ
b

• Gauging outer automorphisms [Bhardwaj, Bottini, SSN, Tiwari]:
E.g. 1-form symmetry Z(S)

2 ×Z(C)
2 of Spin(4n) exchanged by outer

automorphism

Dinv
2 = D

(S)
2 ⊕D

(C)
2

D
(out)
3

D
(S)
2

D
(C)
2



Fusion Higher-Categories

In d > 2 topological defects of dimension 0,1, · · · , d− 1 exist

D
(a,b)
1 D

(a,b)′

1

D
(a)
2

D
(b)
2

D0

Topological defects of fixed dimension have a fusion:

D
(a)
q D

(b)
q D

(c1)
q

⊕ · · ·⊕⊗

D
(ck)
q

⇒ Fusion higher-category. In d dimensions: (d− 1) category.



Ubiquity of Non-Invertible Symmetries

NI 1. String Theory – World-sheet

NI 2. String Theory – Geometric engineering

NI 3. String Theory – Holography

NI 4. String Theory – Branes

NI 5. QFT: Standard Model

NI 6. Lattice models

NI 7. QFT: Constraining Symmetric Phases

Many, many references. Since last spring we finally have some reviews:
[SSN: 2305.18296] [Brennan,Hong: 2306.00912] [Bhardwaj et al: 2307.07547]

[Luo, Wang2: 2307.09215] [Shao: 2308.00747]



NI 1. String Theory – World-sheet

2d CFTs that are rational with respect to a chiral algebra have so-called
Verlinde topological lines [Verlinde][Petkova, Zuber][Chang, Lin, Shao, Yifan Wang,Yin].

Virasoro minimal models have lines labeled by the conformal weights λ

Lλ ⊗Lµ =
⊕
ν

Nν
λ,µLν

and Nν
λ,µ ∈ N are the fusion coefficients.

Example: c = 1/2 Ising CFT has Ising fusion category symmetry N2 = 1⊕ η,
where η = L1/2 and N = L1/16.

Most recent application:
Using integrable flows that commute with the Verlinde lines, consistency with
the symmetry implies modified crossing for the S-matrix [Copetti, Lucia Cordova,

Komatsu].



NI 1. String Theory – World-sheet

Gepner Models.
Calabi-Yau n-fold sigma-models can have Gepner points on the conformal
manifold, which are orbifolded tensor products of N = 2 Minimal Models

(⊗iMMki
)/Γ ,

where

MMk =
su(2)k ⊕ u(1)2

u(1)k+2

and Γ is a finite group action Zlcm(ki+2).

The Gepner model inherits non-invertible symmetries from the Verlinde lines
of the MMs [Cordova, Rizi][Angius, Giaccari, Volpato].

What is it good for? Non-invertible symmetries commuting with exactly
marginal deformations, can constrain spectra, correlators.

Example: the Quintic 3-fold (MMk=3)
5/Z5 has a subspace of deformations

that preserve a Fibonacci fusion category W 2 = 1⊕W .



NI 2. String Theory and Geometric Engineering

[Morrison, SSN, Willet][Albertini, del Zotto, Garcia-Extebarria, Hosseini][Cvetic, Heckman,

Hubner, Thorres], [Penn, Durham, Uppsala, Oxford...][Garcia-Extebarria Strings ’22]

String theory/M-theory on non-compact (special holonomy) space X

engineers QFTs, whose generalized symmetries are encoded in the topology
of X :

Hp+1(X,∂X,Z)
Hp+1(X,Z)

= Infinitely heavy probes, modulo screening

Example:
In M-theory, the 1-form symmetry is obtained by considering M2-branes on
relative 2-cycles (line operators), modulo screening by M2-branes wrapping
compact cycles (local operators).

’t Hooft anomalies for generalized symmetries:
Reduction on the link ∂X [Apruzzi, Bonetti, Garcia-Extebarria, Hosseini, SSN] gives the
d+ 1 dimensional topological theory (Symmetry TFT – more on that later)

Compact models/Swampland: How are global, non-invertible symmetries in
theories of quantum gravity broken/gauged?
⇒ [Miguel Montero’s talk]



NI 3. String Theory and Holography

AdS3/CFT2: Non-invertible symmetries from SN orbifolds
TN/SN symmetric orbifold has non-invertible defects (recall Rep(S3)), where
T = U(1)4. These can be mapped to the tensionless limit of AdS3 string theory
[Gutperle, Li, Rathroe, Roumpedakis][Knighton,Sriprachyakul, Vosmera]

• AdS5/CFT4 [Witten ’98]

• AdS4/CFT3 [Berman, Tachikawa, Zafrir]

• Klebanov-Strassler N = 1 SYM confinement [Apruzzi, van Beest, Gould, SSN]

• Duality Defects [Antinucci, Benini, Copetti, Galati, Rizi][Aguilera Damia,Argurio,

Benini, Benvenuti, Copetti, Tizzano]

The relation between (finite) global symmetries and the bulk holography is:

Topological couplings in the (consistent truncations of) supergravity actions
correspond to the SymTFT for the global symmetries of the boundary FT.



Invertible 1-form symmetries: [Witten ’98]

AdS5 × S5 dual to 4d N = 4 su(N) Super-Yang-Mills: leading terms in the
derivative expansion are

1

2π

∫
AdS5

Nb2dc2

where b2 and c2 are the backgrounds for the electric and magnetic ZN × ẐN

1-form symmetries, whose generators are

D
(b)
2 = ei

∫
b2 , D

(c)
2 = ei

∫
c2 ,

which are mutually non-local

D
(b)
2 (M)D

(c)
2 (M ′) = exp

(
2πiL(M,M ′)

N

)
D

(c)
2 (M ′)D(b)

2 (M) .

L is the linking of the two 2d surfaces in 5d. A global form of the gauge group
is chosen by fixing b.c. for b2 and c2, e.g.

b2 : Dirichlet, i.e. D(b)
2 gives rise to line operators (charges)

c2 : Neumann, i.e. D(c)
2 gives rise to symmetry generators

Fixing a global form of the gauge group, corresponds to selecting a maximal
set of mutually local such defects.



NI 3. String Theory and Holography

Non-invertible Symmetries: [Apruzzi, Bah, Bonetti, SSN]

For the holographic dual to 4d N = 1 su(N) SYM, the topological couplings of
the Klebanov-Strassler solution are

1

2π

∫
M5

Nb2 ∧ dc2 + 2Na1 ∧ dc3 +
1

2π
a1b

2
2 ,

where c3 is the background for the chiral 0-form symmetry Z2N with mixed
anomaly with the 1-form symmetry.

For PSU(N) gauge group, the symmetry generators are

N (1)
3 (M3) =

∫
[Da]e

2πi
∫
M3

(c3+ 1
2Nada+ab2)

with non-invertible fusion

N (1)
3 ⊗N (1)†

3 = CZN
= condensation defect for the 1-form symmetry



NI 4. String Theory and Branes

[Apruzzi, Bah, Bonetti, SSN][Garcia-Extebarria] [Heckman, Hubner, Thorres, Zhang][X. Yu]

Proposal: in the near horizon limit, branes inserted in a holographic setup
furnish symmetry generators. Close to the boundary r→∞: TDp ∼ rp, p > 0,
only topological WZ terms on brane remain.

Holographic dual to N = 1 SYM:
D5-branes on S3 ×M3⊂ T 1,1 ×M4 have topological couplings in the near
horizon limit r→ r0→∞

SD5 = 2π

∫
M3

(
c3 +

N

2
a1da1 + a1db1

)
,

where C6 = c3 ∧ ωS3 , C4 = b1 ∧ ωS3 and a1 is the gauge field on the brane.
For PSU(N) gauge group (b1 Dirichlet), this is the non-invertible defect N (1)

3 .

Non-Invertible fusion from tachyon condensation:
The N (1)

3 ⊗ (N (1)
3 )† = condensation defect for the 1-form symmetry on M3, is

D5-D5 via tachyon condensation (with a remnant D3-charge) [Sen] resulting in
the condensation defect [Apruzzi, Bah, Bonetti, SSN][Bah, Leung, Waddleton]



Generalized Charges from Hanany-Witten Transition

[Apruzzi, Bah, Bonetti, SSN[Apruzzi, Gould, Bonetti, SSN]

How do the non-invertible symmetry generators act on ’t Hooft lines in
PSU(N) SYM?

• Charged line operators:
D3s stretching along the radial direction and wrapped on S2 × S1 give
rise to ’t Hooft lines.

• Topological defects:
D5s on S3 ×M3 generate the non-invertible codim 1 topological defects.

Brane x0 x1 x2 x3 r z1 z2 w1 w2 w3

D3 X X X X

D5 X X X X X X



Charge conservation implies that the total linking of the branes is conserved –
in particular when we exchange the position of the D3 and D5.

Preserving the linking requires the creation of an F1:

D3 D5

=⇒

D5 D3

F1

H N (1)
3

=⇒

HN (1)
3

’t Hooft loop gets flux attachment when it crosses the non-invertible defect –
similar to disorder operator in Kramers-Wannier duality.

General Feature of Non-Invertible Symmetries: maps genuine to
non-genuine (attached to topological defects) operators



String Theory lessons for Generalized Symmetries

Symmetry String Theory

Symmetry TFT Topological subsector of sugra

Symmetry generators Branes in topological limit

Generalized charges Branes wrapping relative cycles

Fusion Tachyon condensation

Linking action of symmetry on charges Hanany-Witten moves



NI 5. QFT – Standard Model

[Ohmori Strings ’22, Cordova Strings ’23]

In QED with massless charge 1 Dirac fermion, the axial current jµ = 1
2 Ψ̄γ5γµΨ

is not conserved due to the ABJ anomaly

d ⋆ j =
1

8π2
F ∧ F .

Define instead a defect dressed by 3d TQFT that has opposite anomaly

D 1
N
(M3) =

∫
[Da] exp

(∫
M3

2πi

N
⋆ j +

iN

4π
ada+

i

2π
adA

)
.

It is topological, but satisfies non-invertible fusion

D 1
N
(M)×D 1

N
(M) = CN (M).

• [Choi, Lam, Shao][Cordova, Ohmori] application to pion decay

• [Cordova, Hong, Koren, Ohmori] Z’ with non-invertible chiral symmetry, gives
breaking by exponentially small amount, application to neutrino masses

• [Cordova, Hong, Koren] Non-Invertible Peccei-Quinn Symmetry and the
Massless Quark Solution to the Strong CP Problem



NI 6. Lattice Models

Huge progress on studying lattice models with non-invertible symmetries –
hep meets cond-mat.

UV lattice models, which have non-invertible symmetries:

• Anyon chain: 1+1d model, that realizes any fusion category symmetry
[Feiguin et al][Aasen, Mong, Fendley][Lootens et al]

• Tensor product Hilbert space realizations: anomalies and LSM theorems
[Cheng, Seiberg], Ising symmetry [Seiberg, Shao][Seiberg, Shao, Seifnashri], Rep(S3)

and Rep(D8) phases [Eck, Fendley][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy,

Wen][Shao, Seifnashri]

• Gapped/gapless phases in (1+1)d lattice models with any fusion category
symmetry [Bhardwaj, Bottini, SSN, Tiwari].

• 2-fusion category symmetries on the honey-comb lattice [Inamura, Ohmori]



In Summary:
There is an abundance of non-invertible symmetries.



What do non-invertible symmetries do for you?



Question 1: Generalized Charges

For group-like symmetries, the charged operators ”charges” transform in
representations. Charges are detected by linking with the symmetry
generators:

Op

D
(g)
d−p−1

The charge under the symmetry group element g ∈ G is measured by
determining the linking of Op with symmetry generator D(g)

d−p−1.

(Genuine) Operators will form representations or multiplets.

Question 1: What replaces this for non-invertible symmetries?
I.e. what are generalized charges.



Question 2: Symmetric Phases

Landau paradigm:
A continuous (2nd order) phase transition is a symmetry breaking transition.

G is a symmetry group, which is spontaneously broken to a subgroup H ,
resulting in |G/H| vacua, which are acted upon by the broken symmetry
(+SPT phases).

Example: G = Z2.
There are two gapped Z2-symmetric phases:

• Trivial phase (H = Z2): Z2 symmetric single vacuum

• Spontaneously Symmetry Broken (SSB) Phase (H = 1): charged operator
O− gets a vacuum expectation value, two vacua, and the broken Z2

exchanges them

Between these there is a 2nd order phase transition: in (1+1)d, the critical Ising
CFT

Z2 SSB Phase ←− Ising CFT −→ Trivial Phase

Question 2: What replaces this for non-invertible symmetries?
I.e. what are implications of a Categorical Landau Paradigm.



Q1. Generalized Charges and Symmetry TFT



Generalized Charges for Non-Invertible Symmetries

Generalized q-charge
= q-dim defect in a ”Representations of a Non-Invertible Symmetry”.

In 2d: tube algebra and lasso-action [Fröhlich, Fuchs, Runkel, Schweigert][Lin, Okada,

Seifnashri, Tachikawa][Bhardwaj, SSN][Bartsch, Bullimore, Ferrari, Pearson]

Example: Ising fusion symmetry of the critical Ising model

η2 = 1 , Nη = ηN = N , N2 = 1⊕ η .

We can act on the spin operator σ (1/16 primary):

σ

N

σ

N

N

N

µ

N

η

The non-invertible symmetry maps σ to µ, which is attached to an η-line
(”twisted sectors, non-genuine” operators).



From Generalized Charges to Linking d+ 1 dims

A complete characterization of generalized charges can be given by going to
d+ 1 dimensions [Bhardwaj, SSN]:

Generalized charges = Linking of topological defects in d+ 1 dims

The d+ 1 dimensional theory is the

Symmetry Topological Field Theory (SymTFT) of S.

Examples:
BF-theory for abelian p-form symmetries (with anomalies).



SymTFT (”Sandwich”)

[Gaiotto, Kulp][Apruzzi, Bonetti, Garcia-Extebarria, Hosseini, SSN] [Freed, Moore, Teleman]

Given a physical QFT T with (finite) symmetry S in d dimensions. The
SymTFT is a d+ 1 dimensional TQFT Z(S) by gauging S in (d+ 1) dims:

Bsym
S Bphys

T
SymTFT

= T

• Bsym
S = Symmetry boundary:

condense a maximal number of mutually local topological defects. The
remaining defects generate S.

• Bphys
T = Physical boundary:

condense a subset of mutually local defects (braiding trivially with each
other, but not necessarily maximal)

The interval compactification gives T with symmetry S.

The topological defects Qp of the SymTFT form the Drinfeld Center of S.



SymTFT: Recovering S

Bsym
S Z(S)

Qp

Bsym
S Z(S)

S
(Qp)
p

Bsym
S : gapped (topological) boundary conditions of the SymTFT:

⇒ Determined by a maximal set of mutually local topological defects, which
form a Lagrangian algebra

Qp with Neumann b.c.s give rise to symmetry generators S.



Linking of Topological Defects is Action of Symmetry

Bphys
T

Bsym
S

Q′

Q

SymTFT Bphys
T

Bsym
S

S(Q′)

Q

SymTFT

→

T

D

O

# [Bhardwaj, SSN ’23]:
The generalized charges are the topological defects Q of the SymTFT,
which condense on both boundaries.

# Q′ that have Neumann b.c. on the Bsym
S boundary are the generators of the

symmetry S.

# Linking of Q and Q′ determines the charge under the symmetry.



SymTFT: Non-genuine Operators

Bsym
S Bphys

T
SymTFT

Qp

Qp

=

T

Op−1

Dp

O is attached to a topological line, i.e. a non-genuine operator.



SymTFT for 0-form symmetry groups in d dims

For (non-abelian) G(0), the topological defects of the SymTFT are labeled by

Q[g],R ,

• conjugacy classes [g]

• representations of the stabilizer group Hg of g ∈ [g].

Example: S3 in 2d:
S3 = Z3 ⋊Z2 = {id, a, a2, b, ab, a2b}
Irreps: + (trivial), − (sign), E (2d representations).
Conjugacy classes:

[id] , Hid = S3

[a] , Ha = {id, a, a2} = Z3

[b] , Hb = {id, b} = Z2 .

Ha = Z3 reps: 1d and characterized by 1, ω = e2πi/3, ω2.
Hb = Z2 reps: labelled by ±.



SymTFT for S3 and Rep(S3)

The topological lines of the SymTFT Z(S3):

Q([id],R)
1 : R = 1,1−,E

Q([a],R)
1 : R = 1, ω,ω2

Q([b],R)
1 : R = ± .

The topological b.c.s (Lagrangian algebras) are

LS3 = ([id],1)⊕ ([id],1−)⊕ 2([id],E)

LS′
3
= ([id],1)⊕ ([id],E)⊕ ([b],1)

LRep(S3)′ = ([id],1)⊕ ([id],1−)⊕ 2([a],1)

LRep(S3) = ([id],1)⊕ ([a],1)⊕ ([b],1)

Multiplet structure:

• S3: Q([id],R)
1 are untwisted; Q([a])

1 and Q([b])
1 are twisted sector reps

• Rep(S3): Q([id],R)
1 are twisted (attached to R lines).

Q([a],1)
1 contains two operators:

1−
O−

and
O+



This can be derived from the action of the symmetry on defects in the SymTFT:

1−

O−

E

O+

E

=

E

O+

− 1
2 +

(
ω+ 1

2

)

1−
O−

E

O−

E

=

E

O+

+ 1
2−

(
ω+ 1

2

)
1− 1−



SymTFT

• Topological defects are the generalized charges

• Gauging a symmetry = change symmetry b.c.

• If S and S ′ that are related by gauging, they have the same SymTFT

• The SymTFT captures ’t Hooft anomalies (→ recall examples in
holography)

Remarks:

• SymTFT exists for any higher-fusion category: the topological defects are
the so-called Drinfeld Center. For 2-fusion categories see [Kong et

al][Bhardwaj, SSN]

Z(2VecωG) =
⊕
[g]

2Repωg (Hg)

• Recently: SymTFT or SymT for continuous abelian and non-abelian
symmetries [Antinucci, Benini][Apruzzi, Bedogna, Dondi][Bonetti, del Zotto,

Minasian][Brennan, Sun]. This can be important for higher-group symmetries
which mix continuous and finite symmetries.



Q2. Application: Classification of Symmetric Phases



Based on work in collaboration with:

Lakshya Bhardwaj (Oxford)
Lea Bottini (Oxford)
Daniel Pajer (Oxford)
Alison Warman (Oxford)
Apoorv Tiwari (NBI, Copenhagen)

2310.03786: Categorical Landau Paradigm and SymTFT
2310.03784: Gapped Phases with Non-Invertible Symmetries
2312.17322: The Club Sandwich: Gapless Phases and Phase Transitions

with Non-Invertible Symmetries
2403.00905: Hasse Diagrams for Gapless SPT and SSB Phases

with Non-Invertible Symmetries
2405.05964: Phases of Lattice Models with Non-Invertible Symmetries



Related works – many in cond-mat:

Gapped phases:
[Thorngren, Wang][Inamura][Huang, Lin, Seifnashri][Cordova, Zhang][S. Huang, Meng Cheng]

Gapless phases:
[Chatterjee, Aksoy, Wen][Wen, Potter]

With fermions:
[S. Huang][Bhardwaj, Inamura, Tiwari]

Non-Invertible SPT phases from lattice models:
[Fechisin, Tantivasadakarn, Albert][Seifnashri, Shao][Jia]

Non-Invertible symmetries and phase transitions in lattice models (RepS3):
[Eck, Fendley][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy, Wen]



Categorical Landau Paradigm

Conjecture/Hope: Generalized (Categorical) Landau Paradigm:
Explain phase transitions using a suitably generalized notion of symmetry.

Let S be a non-invertible symmetry. We develop a framework that determines:

• All S-symmetric gapped phases including the order parameters, i.e.
generalized charges that acquiring vevs

• Gapless phase transitions between S-symmetric gapped phases:

S Gapped Phase ←− CFT −→ S Gapped Phase’

Generalizes the Landau paradigm to S a categorical symmetry

⇒ Categorical Landau Paradigm [Bhardwaj, Bottini, Pajer, SSN]



Classification of gapped S-symmetric phases

Choose Bphys to be also a topological (gapped) boundary condition.

SymTFT

Bsym
S Bphys

top

=

TQFTS

A gapped boundary condition of the SymTFT is a Lagrangian algebra, i.e.

mutually local and maximal subset of defects.

Fix symmetry boundary to be LS :
A gapped S-symmetric phase is given by a Lagrangian algebra L:

• SPT (symmetry protected topological phase): L∩LS = 1

Cannot deform to the trivial theory without breaking symmetry

• SSB (spontaneous symmetry breaking): L∩LS ⊋ 1

# of vacua = # of topological defects that condense on both boundaries, which
are also the order parameters.



Gapped Phases with Group-Symmetry in 2d

Landau type classification: S = G then

• H < G the unbroken symmetry

• ω ∈ H2(H,U(1)) cocycle/SPT phase.

Example: G = Z4

The SymTFT is a 3d topological order (Z4 Dijkgraaf-Witten-theory)
∫
b1 ∪ δc1,

with anyons e = ei
∫
b1 and m = ei

∫
c1 :

Topological defects (anyons): (ei,mj), e4 = 1, m4 = 1 .

e and m braid non-trivially. The Lagrangian, i.e. maximal, trivially braiding
subsets of anyons are:

1. LDir = 1⊕ e⊕ e2 ⊕ e3

2. LNeu = 1⊕m⊕m2 ⊕m3

3. LNeu(Z2) = 1⊕ e2 ⊕m2 ⊕ e2m2

The symmetry boundary is Bsym
S=Z4

= LDir.



Gapped Phases with Z4 Symmetry via the SymTFT

Lphys = LS = LDir Lphys = LNeu Lphys = LNeu(Z2)

LS Lphys

1
e

e2

e3

LS Lphys

1

LS Lphys

1

e2

Z4 SSB:
4 identical vacua,
permuted by Z4

Z4 Trivial Phase:
single vacuum with Z4

acting trivially

Z2 SSB:
2 identical vacua,
permuted by Z2



Gapped Phases with Non-Invertible Symmetry: Ising Category

The SymTFT is Ising ⊠Ising and there is a unique subset of mutually local
anyons (gapped b.c./Lagrangian algebra):

LIsing = 1⊕ 1− ⊕ (σ,µ)

LIsing LIsing

1

1−

(σ,µ)

Resulting in 3=2+1 vacua, with the symmetry acting as

v0 v1 v2

N

ηη

Unique Ising symmetric gapped phase: SSB phase with 3 vacua.



Gapped Phases with Non-Invertible Symmetry: Rep(S3)

Repeating a similar SymTFT analysis now for the non-invertible symmetry
Rep(S3) (1, 1−, E irreps) we find four gapped phases:

Rep(S3) trivial phase Z2 SSB Rep(S3)/Z2 SSB Rep(S3) SSB

v0 Rep(S3) v1 v2

1−

v0 v1 v2

E

1−

v0 v1 v2

E

1−1−



Phase Transitions

Consider two gapped S-symmetric phases, how do we determine the
S-symmetric phase transitions?

S gapped ←− S gaplesss −→ S gapped’

• Gapped phase: determined by Lagrangians Li

• Gapless phase transition between L1 and L2 is characterized by

A12 = L1 ∩L2

i.e., a non-maximal set of mutually local topological defects.

• One can also tune and consider ∩iLi for any subset of Lagrangian
algebras.

Condensable algebras have a partial order, and thus a Hasse diagram.



Gapless Phases and Phase Transitions for Z4

1

1 + e2 1 + e2m2 1 +m2

1 + e+ e2 + e3 1 + e2 +m2 + e2m2 1 +m+m2 +m3

Canonical Z4−gapless

Z2-gSSB igSPT Z2-gSPT

LS and Z4-SSB Z2-SSB SPT

• gSPT (gapless SPT): A∩LS = 1

• igSPT (intrinsically gapless SPT): gSPT that cannot be deformed to an SPT

• gSSB (gapless SSB): A∩LS ⊋ 1

• igSSB (intrinsically gapless SSB): gSSB with n universes, that cannot be
deformed to an SSB with n vacua

For Z4: igSPT was found in [Wen, Potter].
First non-invertible igSPT: Rep(D8n) [Bhardwaj, Pajer, SSN, Warman].



Club Sandwich and Phase Transitions

Non-maximal (”Non-Lagrangian”) condensable algebras define interfaces
between topological orders Z(S) and Z(S ′), where the latter is a reduced
topological order:

Z(S) Z(S ′)

Bsym
S A Bphys

S′

=

T S

Concretely this can be used to make new phase transitions out of old:

⇒ Kennedy-Tasaki-transformations: S ′-symmetric to S-symmetric theories



New Phase Transitions from Old

Consider an input phase transition between S ′-symmetric gapped phases

TS′

1 ←− CS
′

12 −→ TS′

2

The club sandwich produces a phase transition for the symmetry S, which is
the KT transformation of the initial input phase transition:

TS
1 ←− CS12 −→ TS

2



Gapless Phases from SymTFT for Z4

Gapless phase between Z4-SSB to Z2-SSB:

S = Z4 with algebra A = 1⊕ e2, implies S ′ = Z2, so the input transition is an
Ising transition:

Ising0 ⊕ Ising1 Z2Z2

Z4

Z4

Gapless phase between Z4 trivial and Z2 SSB:

Ising Z4



Hasse Diagram for Rep(S3)

1

1 + a 1 + 1− 1 +E

LRep(S3) :

1 + a+ b
1 + 1− + 2a

LS3
:

1+1− + 2E
1 + b+E

Rep(S3) gSPT

Rep(S3)/Z2 igSSB gSPT gSPT

LS = LRep(S3)

and Rep(S3) SSB
Rep(S3)/Z2 SSB SPT Z2 SSB



Phase diagram for Rep(S3) in 2d

Rep(S3)= {1, σ,E}. Both from continuum and from spin-chain models
[Bhardwaj, Pajer, SSN, Warman][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy, Wen]

I: Trivial

v Rep(S3)

III: Rep(S3)/Z2 SSB

v0 v1 v2

II: Z2 SSB

v+ v−

IV: Rep(S3) SSB

v2 v1 v0

Potts

Ising Ising⊕Ising



A Roadmap of Phases with Symmetry S

• Construct the SymTFT and its topological defects.

• Determine all condensable algebras of topological defects.

• In particular: L1 and L2 are Lagrangians, that give rise to gapped phases,
then the gapless phase between these is given by A12 = L1 ∩L2.

• SymTFT encodes the order parameters and symmetry implementation.

Results in new phases with non-invertible symmetries, e.g. found
non-invertible SPTs and igSPTs for Rep(D8n).

Crucially, this is applicable to any fusion category symmetry.



Conclusions and Open Questions

Non-Invertible/Categorical symmetries are everywhere. Don’t think about
escaping them (or: stop worrying and learn about categories).
Open Questions:

1. Classification of symmetric phases: 3d and 4d where the full structure of
higher fusion categories will need to be tapped in [wip Oxford]

2. gSPT, igSPT, gSSB, igSSB phases in higher dimensions: QFT examples?
[Antinucci, Copetti, SSN, wip]

→ gSPTs in 4d [Thomas Dumitrescu’s talk.]

3. Categorical Landau: Is there a LG model for non-invertible symmetries?

4. SymTFT: Inclusion of spacetime symmetries (in lattice models: [Seiberg,

Seifnashri, Shao]) and continuous symmetries into the SymTFT.

5. How is the full structure of higher-fusion categories encoded in string
theory/holography? Condensation completion, higher associators, etc.

6. Develop constraints on RG-flows from non-invertible symmetries beyond
2d.

7. Lattice model realizations for the above: lattice realizations of
non-invertible symmetries in 3d, 4d.



https://sites.google.com/view/symmetries2024/home

https://www.kitp.ucsb.edu/activities/gensym25



Supplementary Material



What is a categorical symmetry?

Topologiocal defects = symmetries.

(d− p− 1)-dimensional defect links in d dimensions with a p-dimensional
charged operator. ”p-form symmetry”.

A non-invertible symmetry in d-spacetime dimensions is a (d− 1)-fusion
category:

• Topological defects of dimension (d− 1), up to 0: (d− 1) objects, (d− 2)

morphisms, (d− 3) 2-morphisms, etc.

• Fusion of defects in each dimension

• Compatibility/associativity conditions

d = 3:

D
(a,b)
1 D

(a,b)′

1

D
(a)
2

D
(b)
2

D0



Fusion Categories

In (1+1)d:

• Objects: topological lines D(g)
1 ,

• Morphisms: topological point operators D0 ∈ Hom(D
(g)
1 ,D

(h)
1 ).

• Fusion:
D

(g)
1 ⊗D

(h)
1 =

⊕
k

Ng,h
k D

(k)
1 .

D0

D
(g)
1 D

(h)
1

D
(k)
1



• Associativity:

D
(g1)
1 D

(g2)
1 D

(g3)
1

D
(g4)
1

= ω(g1, g2, g3, g4)

D
(g1)
1 D

(g2)
1 D

(g3)
1

D
(g4)
1



Classification of Phases

Phase Physical characterization
Energy gap ∆

Symmetry gap ∆S

Condition on A
in (1+1)d

n

SPT
Gapped system with energy gap ∆ > 0. IR: trivial TQFT.
S-charges confined in IR appear at an energy scale (symmetry gap) ∆S ≥∆ > 0.
Order parameters (OPs) are all of string type (i.e. in twisted-sectors for S).

∆ > 0

∆S > 0

A = L
A∩LS = 1

1

gSPT

Gapless system with ∆ = 0 and a unique ground state on circle.
Not all charges of S appear in IR.
The confined charges appear at a symmetry gap ∆S > 0.
OPs are all of string type.

∆ = 0

∆S > 0

A ̸= L
A∩LS = 1

1

igSPT
A gSPT phase that cannot be deformed to a gapped SPT phase,
because it has confined charges not exhibited by any of the gapped SPTs.

∆ = 0

∆S > 0

A ̸= L
A∩LS = 1

1

SSB

Gapped system with n degenerate vacua (labeled by i) permuted by S action.
Each vacuum i has energy gap ∆(i) > 0. Going from i to j costs ∆(ij) > 0.
Not all charges realized in IR =⇒ symmetry gap ∆S > 0.
OPs are multiplets with string and non-string type.

∆(i) > 0

∆(ij) > 0

∆S > 0

A = L
A∩LS ⊋ 1

> 1

gSSB

Gapless system with n degenerate gapless universes labeled by i.
Each universe has a unique ground state on a circle. Going from i and j costs ∆(ij) > 0.
Not all charges realized in IR =⇒ symmetry gap ∆S > 0.
OPs string and non-string type

∆(i) = 0

∆(ij) > 0

∆S > 0

A ̸= L
A∩LS ⊋ 1

> 1

igSSB
A gSSB phase with n universes that cannot be deformed to a gapped
SSB phase with n vacua.

∆(i) = 0

∆(ij) > 0

∆S > 0

A ̸= L
A∩LS ⊋ 1

> 1

∆ is the energy gap. ∆S the symmetry gap: not all S-charges are realized in
the IR. The missing/confined charges are realized by excited states. The
symmetry gap ∆S , is the energy of the first excited state carrying one of the
confined charges. The symmetry becomes less faithful going downwards.



Hasse Diagram for Rep(D8)

21

Dim Condensable Algebra of Z(Rep(D8)) (with label) Reduced TO S 0 Phase for S = Rep(D8) n

1 1 (V.0) S Rep(D8)�gapless 1

2 1� eRG (V.1) Z4 gSPT 1

2 1� eGB (V.2) Z4 gSPT 1

2 1� eRB (V.3) Z4 gSPT 1

2 1� eR (V.4) Z2 ⇥ Z2 gSPT 1

2 1� eG (V.5) Z2 ⇥ Z2 gSPT 1

2 1� eB (V.6) Z2 ⇥ Z2 gSPT 1

2 1� eRGB (V.7) Z2 ⇥ Z2 gSSB 2

4 1� eGB � eRB � eRG (V.8) Z!
2 igSPT 1

4 1� eR �mGB (V.9) Z2 gSSB 2

4 1� eR �mG (V.10) Z2 gSPT 1

4 1� eR �mB (V.11) Z2 gSPT 1

4 1� eG �mRB (V.12) Z2 gSSB 2

4 1� eG �mR (V.13) Z2 gSPT 1

4 1� eG �mB (V.14) Z2 gSPT 1

4 1� eB �mRG (V.15) Z2 gSSB 2

4 1� eB �mR (V.16) Z2 gSPT 1

4 1� eB �mG (V.17) Z2 gSPT 1

4 1� eRGB �mRG (V.18) Z2 igSSB 3

4 1� eRGB �mGB (V.19) Z2 igSSB 3

4 1� eRGB �mRB (V.20) Z2 igSSB 3

4 1� eG � eR � eRG (V.21) Z2 gSPT 1

4 1� eB � eG � eGB (V.22) Z2 gSPT 1

4 1� eB � eR � eRB (V.23) Z2 gSPT 1

4 1� eGB � eR � eRGB (V.24) Z2 gSSB 2

4 1� eG � eRB � eRGB (V.25) Z2 gSSB 2

4 1� eB � eRG � eRGB (V.26) Z2 gSSB 2

8 1� eG � eR � eRG � 2mB (V.27) trivial SPT 1

8 1� eB � eRG � eRGB � 2mRG (V.28) trivial SSB 4

8 1� eGB � eR � eRGB � 2mGB (V.29) trivial SSB 4

8 1� eB � eR � eRB � 2mG (V.30) trivial SPT 1

8 1� eG � eRB � eRGB � 2mRB (V.31) trivial SSB 4

8 1� eB � eG � eGB � 2mR (V.32) trivial SPT 1

8 1� eRGB �mGB �mRB �mRG (V.33) trivial LS and SSB 5

8 1� eB �mG �mR �mRG (V.34) trivial SSB 2

8 1� eR �mB �mG �mGB (V.35) trivial SSB 2

8 1� eG �mB �mR �mRB (V.36) trivial SSB 2

8 1� eB � eG� eGB � eR� eRB � eRG� eRGB (V.37) trivial SSB 2

TABLE III. Condensable Algebras of Z(Rep(D8)) with their quantum dimension, associated Reduced Topological Order S 0.
The fourth column describes the phases once the symmetry S = Rep(D8) is fixed. The last column contains the integer n,
defined in equation (IV.27), which is used to characterize the phases as explained in section V.
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Rep(D8)�gapless

V.3

gSPT
V.2

gSPT
V.6

gSPT
V.7

gSSB
V.5

gSPT
V.4

gSPT
V.1

gSPT

V.16

gSPT
V.17

gSPT
V.20

igSSB
V.19

igSSB
V.15

gSSB
V.18

igSSB
V.13

gSPT
V.12

gSSB
V.22

gSPT
V.25

gSSB
V.14

gSPT
V.10

gSPT
V.9

gSSB
V.23

gSPT
V.24

gSSB
V.11

gSPT
V.8

igSPT
V.26

gSSB
V.21

gSPT

V.34

SSB
V.32

SPT
V.31

SSB
V.36

SSB
V.30

SPT
V.29

SSB
V.35

SSB
V.28

SSB
V.37

SSB
V.27

SPT
V.33

LS and SSB

FIG. 3. Hasse diagram for Z(Rep(D8)) Phases. In each box we link to the condensable algebras, listed in table III, which give rise to a Reduced Topological Order S 0.
The lowest level are the maximal, i.e. Lagrangian, algebras. Picking one of these as the symmetry Lagrangian algebra that fixes the symmetry S allows classification
of all phases.


