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Motivation

Supersymmetric localization allows for the exact calculation of physical
observables in supersymmetric QFTs.

Apply this tool to SCFTs with holographic duals in string and M-theory.

ZCFT[J ] = Zstring/M[ϕ] .

Focus on subleading terms in the large N expansion to learn about quantum
corrections to the supergravity approximation.

Why?

Explore precision holography.
New handle on AdS vacua of string and M-theory with non-trivial fluxes.
Learn about quantum corrections to black hole thermodynamics.

This talk

Recent progress on these topics for 3d SCFTs with AdS4 duals in type IIA
string theory and M-theory.
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ABJM and holography
The ABJM theory: U(N)k × U(N)−k 3d CS-matter theory with two pairs of
bi-fundamental chirals (A1,2, B1,2) and superpotential

W = Tr(A1B1A2B2 − A1B2A2B1) .

For k > 2 it has N = 6 supersymmetry and SU(4)R × U(1)b global symmetry.
Describes N M2-branes on C4/Zk.

In the limit of fixed k and large N , the ABJM theory is dual to the
M-theory background AdS4 × S7/Zk

(L/ℓP)6 ∼ k N .

At large k and fixed ’t Hooft coupling λ = N/k the theory is dual to type
IIA string theory on AdS4 × CP3

k gst = L/ℓs ∼ λ1/4 .

Perturbative type IIA string theory at large k and small gst, i.e. fixed λ
and large N .
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ABJM on S3 - An Airy Tale
The path integral on a squashed S3 with real mass deformation can be
computed by supersymmetric localization and reduces to a matrix model. At
large N and fixed k one finds

ZS3 (N, k, ma, b) = eA(k,ma,b)C− 1
3 Ai[C− 1

3 (N − B)] + O(e−
√

N ) ,

with

C = 2
π2k

(b + b−1)−4∏4
a=1 ∆a

, B = k

24 − 1
12k

4∑
a=1

1
∆a

+
1 − 1

4
∑

a
∆2

a

3k(b + b−1)2
∏4

a=1 ∆a

,

and

∆1 = 1
2 − i m1 + m2 + m3

b + b−1 , ∆2 = 1
2 − i m1 − m2 − m3

b + b−1 ,

∆3 = 1
2 + i m1 + m2 − m3

b + b−1 , ∆4 = 1
2 + i m1 − m2 + m3

b + b−1 .

The large N expansion takes the explicit form

− log ZS3 = 2
3
√

C
N

3
2 − B√

C
N

1
2 + 1

4 log N − A + 1
4 log 32

k
+ O(N− 1

2 ) .

The Triptych: The pieces in red above!



ABJM on S3 - An Airy Tale
The path integral on a squashed S3 with real mass deformation can be
computed by supersymmetric localization and reduces to a matrix model. At
large N and fixed k one finds

ZS3 (N, k, ma, b) = eA(k,ma,b)C− 1
3 Ai[C− 1

3 (N − B)] + O(e−
√

N ) ,

with

C = 2
π2k

(b + b−1)−4∏4
a=1 ∆a

, B = k

24 − 1
12k

4∑
a=1

1
∆a

+
1 − 1

4
∑

a
∆2

a

3k(b + b−1)2
∏4

a=1 ∆a

,

and

∆1 = 1
2 − i m1 + m2 + m3

b + b−1 , ∆2 = 1
2 − i m1 − m2 − m3

b + b−1 ,

∆3 = 1
2 + i m1 + m2 − m3

b + b−1 , ∆4 = 1
2 + i m1 − m2 + m3

b + b−1 .

The large N expansion takes the explicit form

− log ZS3 = 2
3
√

C
N

3
2 − B√

C
N

1
2 + 1

4 log N − A + 1
4 log 32

k
+ O(N− 1

2 ) .

The Triptych: The pieces in red above!



ABJM on S3 - An Airy tale
This can be rewritten à la ’t Hooft into a type IIA string expansion (λ = N/k)

FS3 = − log ZS3 = −
∑
g≥0

(2πiλ)2g−2Fg(λ) N2−2g .

The genus g type IIA free energies can be computed systematically (up to
e−

√
λ corrections) and read (for ma = 0 and b = 1)

F0(λ) = 4π3√
2

3 λ̂
3
2 + ζ(3)

2 ,

F1(λ) = π

3
√

2
λ̂

1
2 − 1

4 log λ̂ + 1
6 log λ + 1

12 log π2

32 + 2ζ′(−1) − 1
2 log 2 ,

F2(λ) = 5 λ̂− 3
2

96π3
√

2
− λ̂−1

48π2 + λ̂− 1
2

144π
√

2
− 1

360 ,

F3(λ) = 5 λ̂−3

512π6 − 5 λ̂− 5
2

768π5
√

2
+ λ̂−2

1152π4 − λ̂− 3
2

10368π3
√

2
− 1

22680 ,

where
λ̂ = λ − 1

24 .

Derive this from type IIA string theory?
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The topologically twisted index

The topologically twisted index (TTI) is the partition function of 3d N = 2
SCFTs on S1 × Σg. Supersymmetry is preserved by a topological twist on Σg.

Using supersymmetric localization the path integral can be reduced to a matrix
integral and computed at large N and fixed k. The free energy is:

FS1×Σg
= π

√
2k∆1∆2∆3∆4

3

4∑
a=1

na

∆a

(
N̂

3
2

∆ − ca

k
N̂

1
2

∆

)
+ 1 − g

2 log N̂∆ − f̂0(k, ∆, n) + O(e−
√

N ) ,

where
∑4

a=1 ∆a = 2,
∑4

a=1 na = 2(1 − g), and

N̂∆ ≡ N − k

24 + 1
12k

4∑
a=1

1
∆a

, ca =
∏

b ̸=a
(∆a + ∆b)

8∆1∆2∆3∆4

∑
b̸=a

∆b .

The holographic dual is given by (Euclidean) supersymmetric static
Reissner-Nordström BHs in AdS4. The TTI computes the entropy of these BHs.



The topologically twisted index

The topologically twisted index (TTI) is the partition function of 3d N = 2
SCFTs on S1 × Σg. Supersymmetry is preserved by a topological twist on Σg.

Using supersymmetric localization the path integral can be reduced to a matrix
integral and computed at large N and fixed k. The free energy is:

FS1×Σg
= π

√
2k∆1∆2∆3∆4

3

4∑
a=1

na

∆a

(
N̂

3
2

∆ − ca

k
N̂

1
2

∆

)
+ 1 − g

2 log N̂∆ − f̂0(k, ∆, n) + O(e−
√

N ) ,

where
∑4

a=1 ∆a = 2,
∑4

a=1 na = 2(1 − g), and

N̂∆ ≡ N − k

24 + 1
12k

4∑
a=1

1
∆a

, ca =
∏

b ̸=a
(∆a + ∆b)

8∆1∆2∆3∆4

∑
b̸=a

∆b .

The holographic dual is given by (Euclidean) supersymmetric static
Reissner-Nordström BHs in AdS4. The TTI computes the entropy of these BHs.



The topologically twisted index

The topologically twisted index (TTI) is the partition function of 3d N = 2
SCFTs on S1 × Σg. Supersymmetry is preserved by a topological twist on Σg.

Using supersymmetric localization the path integral can be reduced to a matrix
integral and computed at large N and fixed k. The free energy is:

FS1×Σg
= π

√
2k∆1∆2∆3∆4

3

4∑
a=1

na

∆a

(
N̂

3
2

∆ − ca

k
N̂

1
2

∆

)
+ 1 − g

2 log N̂∆ − f̂0(k, ∆, n) + O(e−
√

N ) ,

where
∑4

a=1 ∆a = 2,
∑4

a=1 na = 2(1 − g), and

N̂∆ ≡ N − k

24 + 1
12k

4∑
a=1

1
∆a

, ca =
∏

b ̸=a
(∆a + ∆b)

8∆1∆2∆3∆4

∑
b̸=a

∆b .

The holographic dual is given by (Euclidean) supersymmetric static
Reissner-Nordström BHs in AdS4. The TTI computes the entropy of these BHs.



The superconformal index

The superconformal index (SCI), or S1 ×ω S2 partition function, counts
1

16 -BPS operators in 3d N = 2 SCFTs. It can be computed by supersymmetric
localization.

It is useful to consider the Cardy-like limit ω → 0. The SCI can then be
analyzed with similar tools as the TTI.

For the ABJM theory at fixed k and large N we find the following ω−1 and ω0

results (for ∆a = 1/2)

logZS1×ωS2 (N, k, ω)

= −π
√

2k

3

[ ( 1
2ω

+ 1
) (

N − k

24 + 2
3k

) 3
2

− 3
k

(
N − k

24 + 2
3k

) 1
2

]
− 2

ω
ĝ0(k) − 1

2 log
(

N − k

24 + 2
3k

)
+ f̂0(k) + O(e−

√
N ) + O(ω) .

This index captures the entropy of supersymmetric AdS4 Kerr-Newman black
holes.
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Higher-derivative corrections
[Lauria,Van Proeyen]; [Bergshoeff,de Roo,de Wit]; [Butter,de Wit,Kuzenko,Lodato]; [Myers];
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Higher-derivative supergravity
The complete set of 8-derivative corrections to 11d supergravity is not known.
Use 4d N = 2 minimal gauged supergravity instead!

Employ conformal supergravity to show that the leading 4-der correction is

L4∂ = −(16π GN )−1[
R + 6 L−2 − 1

4 FµνF µν
]

+ (c1 − c2) LW2 + c2 LGB .

Two undetermined constants c1 and c2. They should encode information about
the 8-der terms in 11d and the internal manifold X7.

The regularized on-shell action is related to the “free energy” in the dual QFT.
For all 2-der solutions (including non-susy ones) one finds

I4∂ =
[
1 + 64πGN

L2 (c2 − c1)
]

πL2

2GN
F + 32π2c1 χ .

F = 2GN
πL2 (I2∂ + ICT

2∂ ): regularized on-shell action of the 2-der theory.

χ = 1
32π2 (IGB + ICT

GB ): Euler characteristic of the 4-manifold.

Upshot: I4∂ can be computed explicitly for all known 2-der solutions of 4d
minimal gauged supergravity.
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M2-branes at large N
General arguments about HD terms in holography combined with the 2-der
structure of 11d supergravity imply the following large N behavior

L2

2GN
= A N

3
2 + a N

1
2 , c1 = v1

N
1
2

32π
, c2 = v2

N
1
2

32π
.

With this at hand the 4-der on-shell action becomes

I4∂ = π F
[
A N

3
2 + (a + v2) N

1
2

]
− π (F − χ) v1 N

1
2 .

Idea: Fix the unknown constants (A, a + v2, v1) by using supersymmetric
localization results for CT and the round S3 free energy.

This allows us to fix I4∂ to order N
1
2 for ABJM!

A =
√

2k

3 , a + v2 = − k2 + 8
24

√
2k

, v1 = − 1√
2k

.

Consistency checks using the N
1
2 terms in the TTI, SCI, and squashed S3

partition functions. Non-trivial predictions for other partition functions!
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Log corrections
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Log corrections

There are log corrections to the BH entropy

SBH = Area
4GN

+ s0 log Area
GN

+ . . .

Ashoke Sen: s0 can be computed via 1-loop contributions of all “light” fields in
the BH background. Agreement with microscopic string theory calculations for
BPS black holes. “IR window into UV physics!”

Here: Log corrections in AdS4, i.e. log L2

GN
∼ log N .

FS3 (b, ∆) = f 3
2

(b, ∆)N
3
2 + f 1

2
(b, ∆)N

1
2 + 1

4 log N + . . .

FS1×Σg
(n, ∆) = g 3

2
(n, ∆)N

3
2 + g 1

2
(n, ∆)N

1
2 + 1 − g

2 log N + . . .

FS1×ωS2 (ω, ∆) = h 3
2

(ω, ∆)N
3
2 + h 1

2
(ω, ∆)N

1
2 + 1

2 log N + . . .

The coefficient of log N does NOT depend on continuous parameters!
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Heat kernel in 4d
Study the log term in the (Euclidean) path integral of GR+EFT in AdS4 with
cutoff scale Λ

− log ZGR+EFT = 1
16πGN

Scl(ϕ) + C log LΛ + . . . .

All fields ϕ with massϕ < Λ contribute to C. Use the heat kernel method to
compute C.

Input: The kinetic operator Qϕ and the number of zero modes

C =
∑

ϕ

∫
d4x

√
g a4(x, Qϕ) + CZM .

The Seeley-de Witt coefficient a4(x, Qϕ) depends on the background fields

16π2a4(x, Qϕ) = aEE4 + cW 2 + b1R2 + b2RFµνF µν .

Possible (tedious) to calculate a4(x, Qϕ) for massive fields of spin ≤ 2.

Subtlety: It is in general hard to compute CZM. Rigorous results only for AdS4
and AdS2 × Σg.
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Possible (tedious) to calculate a4(x, Qϕ) for massive fields of spin ≤ 2.

Subtlety: It is in general hard to compute CZM. Rigorous results only for AdS4
and AdS2 × Σg.



KK supergravity
“Log-Bootstrap”: Study various 4d supergravity backgrounds and impose that
C does not depend on continuous parameters. Leads to the strong constraint

ctot = btot
1 = btot

2 = 0

Top-down: 11d sugra on S7. The resulting 4d N = 8 gauged sugra is not a
standard EFT, it has infinitely many fields!

Organize the KK modes into N = 8 multiplets and compute the SdW
coefficients. At each KK level n one has c(n) = b1(n) = 0.

For the total aE coefficient one finds the divergent sum

aE = 1
72

∞∑
n=0

(n + 1)(n + 2)(n + 3)2(n + 4)(n + 5) .

Unclear how to regulate this sum. If we postulate aE = 1/3 then we find

C(M) = 1
4χ(M) .

Perfect agreement with all susy localization results in the ABJM theory!
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The unbearable lightness of the KK scale

Assumption: The UV completion of GR+EFT in AdS4 is holographic, i.e. there
is a dual sequence of 3d CFTs with a suitable large N limit.

Consider such a GR+EFT with finitely many fields and a cutoff Λ such that
LΛ ∼ Nα with α > 0 (or LΛ ∼ λβ for a marginal coupling λ).

The free energy of the 3d CFT on a compact Euclidean manifold M3 is

log ZCFT(M3) = F0 + Clog log N ,

where F0 contains all positive powers of N .

If Clog does not depend on continuous parameters (mass, squashing, angular
velocity) then the SdW coefficients of the 4d bulk theory are constrained

ctot = btot
1 = btot

2 = 0 .

This is a strong constraint for the UV consistency of EFTs in AdS4!
Obeyed for many AdS4 vacua in IIA, IIB, and 11d supergravity.

A new tool to delineate the landscape of scale separated AdS4 vacua?
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Non-perturbative corrections
[Gautason,Puletti,van Muiden]; [Beccaria,Giombi,Tseytlin]; [NPB,Hong,Reys];

[NPB,Gautason,Hong,Puletti,Reys,van Muiden]



Non-perturbative effects
Consider the IIA limit, i.e. fixed λ = N/k with both N and k large.

For S3 the leading non-perturbative correction to the free energy is

F CFT
np = k2

4π2 e−2π
√

2λ + . . . .

For the TTI (S1 × Σg) the result is

F CFT
np = 4k2λ e−2π

√
2λ + . . . .

This can be reproduced in IIA string theory by a probe Euclidean string
wrapping a CP1 inside CP3.

F bulk
np = Z1−loop e−Scl + . . . .

Agreement for the S3 setup after a careful calculation of Z1−loop.

For a probe Euclidean string in the RN black hole dual to the TTI we find

F bulk
np = B k2λ e−2π

√
2λ + . . . .

Subtle to fix the numerical factor B. [work in progress]
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Black holes and thermal observables
[Witten]; [Horowitz,Myers]; [NPB,Charles,Hristov,Reys]; [NPB,Hong,Reys];

[Iliesiu,Koloğlu,Mahajan,Perlmutter,Simmons-Duffin]; [Luo,Wang]; [Benjamin,Lee,Ooguri,Simmons-Duffin]



BHs and thermal observables
Using the results above we can compute the leading corrections to the entropy
of any large asymptotically AdS4 × S7/Zk black hole.
Example: AdS4-Schwarzschild black hole

SABJM
Sch = 2πr2

+

L2

√
2k

3

(
N

3
2 + 16 − k2

16k
N

1
2

)
+ 2π√

2k
N

1
2 − 1

2 log N + . . .

Consider a 3d CFT on S1
β × R2. The vev of the stress-energy tensor and the

thermal free energy are

⟨T 00⟩ = 2
3

bT

β3 , FS1
β

×R2 = fT

β3 , 3fT = bT .

To compute fT in the bulk use the “AdS4 soliton”. For the ABJM theory we
find

bT = −8π2√
2k

27 N
3
2 + π2(k2 − 16)

27
√

2k
N

1
2 + 0 × log N + . . . .

Somewhat surprisingly to this order at large N bT = − π3

72 CT !
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Summary

Exact results for the large N partition function of the ABJM theory on
S3, S1 × Σg, and S1 ×ω S2.

Discussed how some of these results can be reproduced by supergravity
and string/M-theory via AdS/CFT.

All order microscopic prediction for the entropy of the supersymmetric
AdS4 Reissner-Nordström and Kerr-Newman black holes.

New constraints on gravity + EFT in AdS4?

Application of these results to non-supersymmetric black hole
thermodynamics and CFT thermal observables.



Outlook
Results I did not discuss

All order large N supersymmetric partition functions for other 3d N = 2
holographic SCFTs arising from M2- and D2-branes.

Similar higher-derivative and logarithmic correction results for the
holographically dual AdS4 backgrounds in string/M-theory.

Large N and holographic results for 3d N = 2 SCFTs arising from
M5-branes (class R SCFTs).

Some open questions
Analytic derivation of the TTI, SCI, and deformed S3 results/conjectures?

Supersymmetric localization in 4d/11d supergravity?

Derivation from (and lessons for) type IIA string theory and M-theory?

OSV-type conjecture for AdS black holes?

Application of the “unbearable lightness” constraint to candidate scale
separated AdS4 vacua?
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