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Introduction

Spectrum of operators: most basic observable of any
CFTd . Same as spectrum of states on Sd−1 (state
operator map).
In holographic theories, the Hawking Beckenstein entropy
of black holes computes the entropy[a] of this spectrum, at
energies[b] of order 1/G.
The well known AdS Kerr Reisnner Nordstorm black holes
yield relatively simple analytic expressions for this entropy
as a function of energy and charges. However these black
holes are (sometimes) unstable at large values of charge
and angular momentum.
This talk: what is the correct entropy formula for
holographic CFTs at large charges? [c]

[a] Coarse grained over intervals much larger than unity

[b] And angular momenta, R charges, etc also of order 1/G

[c] Equivalently, what is the end point of the large charge black hole instabilities?.
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Part I: Large angular momentum
We begin by studying S(E , J) in any CFT3

[a] that has with
a two derivative dual gravitational description.
Kerr AdS4 black holes are parameterized by their energy E
and angular momentum J. The entropy of these black
holes appears to give a universal [b] prediction for S(E , J)
for all CFTs that have a two derivative bulk dual
description.
Unitarity of the dual CFT predicts that these black holes
should only exist for E > J. Expectation borne out by black
hole physics. Black holes at angular momentum J exist
only for E > Eext(J), i.e. at energies above extremality.
Turns out Eext(J) > J. This is in agreement with unitarity,
but it is a bit surprising that AdS4 black holes ‘oversaturate’
the unitarity bound.

[a] CFT3 is the simplest case because SO(3) angular momental are paremeterized by a single number.

[b] Universal because every two derivative theory of gravity that admits an AdSd solution also admits a consistent

truncation to the d dimensional Einstein equations with a negative cosmological constant.
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Existence Plot for Kerr AdS4 black holes
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Figure: Dark Blue=Extremal, Green= Unitarity bound
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Instability for ω > 1.
It has been known for 20 years that any black hole with
angular velocity ω > 1 is unstable in AdS space [a,b] .
Easy to understand intuitively. A black hole with inverse
temperature β and angular velocity ω computes

Tre−β(H−ωJz) (1)

Consider the operator ∂n
z O where O is any single trace

operator. When n is large enough, the quantum numbers
of this operator are E ≈ n, J ≈ n. Consequently ∂n

z O is
Boltzman enhanced rather than suppressed when ω > 1
and n is large enough [c].
By explicit computation one finds that Kerr-AdS black have
ω > 1- and so are unstable -in a band around extremality.

[a] V. Cardoso and O. Dias, hep-th/0405006

[b] S. Green, S. Hollands, A. Ishibashi and R. Wald, ArXiv 1512.02644

[c] As this is true for all n that are large enough, an infinite number of modes are unstable at every ω > 1.
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Instability Region of Kerr AdS black holes
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Figure: Red Curve: ω = 1. Blue Curve: extremality. Black hole in the
shaded blue region are unstable.
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Black hole - graviton gas equilibrium

In order to understand the end point of the ω > 1
superradiant instability, recall that a black hole in AdS lives
in equilibrium with a gas of gravitons at the same value of
β and ω.
When working to leading order at large N (small G) we
ignore this gas, because its charges and entropy are
subleading compared to those of the black hole. This is
correct when ω < 1.
As ω → 1, however, the energy, angular momentum etc of
the gas diverge. Once ω approaches close enough to unity,
the gas contribution to the energy and angular momentum
are comparable to the black hole, and can no longer be
ignored. Let us understand this quantitatively. In the
formulae below we parameterize Newton’s constant by

G =
R2

AdS
N2
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Free Gas Thermodynamics I
The descendents of a scalar primary of dimension ∆ take
the form

(∂2)n∂µ1 . . . ∂µl O

and carry quantum numbers

E = ∆+2n+l , Jz = l−a, n = 0 . . .∞, l = 0 . . .∞, a = 0 . . . 2l
(2)

Multiparticling over these modes we find

lnZ =
∞∑

n,l=0

2l∑
a=0

− ln
(

1 − e−β(∆+2n+ωa)−β(1−ω)l
)

(3)

The summation over n and a is always exponentially
damped. However the sum over l is undamped - and so
diverges - as ω → 1. The leading divergence is accurately
estimated by replacing the sum over l by an integral.
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Free Gas Thermodynamics II
We find

lnZ = − 1
β(1 − ω)

∞∑
n,a=0

∫ ∞

0
dx ln

(
1 − e−β(∆+2n+a)−x

)
= − C∆(β)

β(1 − ω)
(4)

where

C∆(β) =
∞∑

n,a=0

∫
dx ln

(
1 − e−β(∆+2n+a)−x

)
(5)

Consequently

∆E ∼ ∆L ∼ − C∆(β)

β2(1 − ω)2 . (6)

so the energy and angular momentum in the gas is
comparable to that in the black hole when 1 − ω ∼ 1

N
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Non Interacting Mix

On the other hand the entropy of the gas is given by

S =
C′(β)

(1 − ω)
− 2C(β)

β(1 − ω)

and so is of order N (and so subleading) at this value of ω
The gas lives in a disk surrounding the black hole. This
disk has constant proper thickness, and extends upto a
radial distance of r ∼

√
l ∼

√
N. Though the gas carries

energy of order N2, its density is only of order N ≪ N2.
The black hole and gas are effectively non interacting,
because they are widely separated in the radial direction.
The gas is of parametrically low density, and so is
effectively non self interacting. As a consequence, the
thermodynamics of our system is that of a non interacting
mix of ω = 1 Kerr AdS black holes and a free gas of
gravitons (living in AdS) with ω = 1 − α

N .
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Grey Galaxy Gravity Solution

In [1] we have developed the gravity soluiton for these
‘Grey Galaxies’ in a mixed asymptotic expansion (small
parameter 1

N ). At r ∼ 1 we have the ω = 1 Kerr-AdS black
hole plus + O

( 1
N

)
. At r ∼

√
N, we have the linearized

metric backreaction to the stress tensor of the free gas
plus fractional corrections ∼ 1

N .
The free thermal gas is an ensemble of ∼ eN states, so the
gravity solution sourced by this gas has statistical
fluctuations. At r ∼ O(1), fluctuations ∼ mean, but the
mean ∼ O(1/N). Intervals of r ∼

√
N, ‘contain’ ∼ N

graviton modes and so fluctuations ∼ mean√
N

. Consequently
fluctuations not significant at leading order in large N.
We conjecture that the superradiant instability of an ω > 1
Kerr AdS black hole evolves to a typical Grey Galaxy
ensemble element, and so the Grey Galaxy solution.
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New Entropy formula
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Boundary stress tensors
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Figure: Plots of the normalized boundary differential energy density,
ρ(θ), as a function of θ: note the smooth black hole contribution and
the δ function contribution from the gas.
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Grey Galaxies in Higher Dimensions
Grey galaxies also exist in AdSd for d ≥ 5 [a]. Main difference
from d = 4: SO(d) has rank > 1.
Consider e.g. d = 5. Two chemical potentials, ω1 and ω2,
corresponding to orthogonal ‘two plane’ angular momentum, J1
and J2. We have the following three stable phases

(a): Black holes with ω1 < 1 and ω2 < 1.
(b): Black holes with ω1 ≈ 1 but ω2 < 1, in equilibrium with
a gas with large J1 (or 1 ↔ 2)
(c): Black holes with ω1 = ω2 ≈ 1, in equilibrium with a gas
with large J1 and J2. [b]

Can show that these three phases give a complete (and non
overlapping cover) of the unitarily allowed charge space
E ≥ J1 + J2.
[a] Currently under investigation in [4]

[b] In phase (b) the gas contribution to the boundary stress tensor is sharply localized on a one dimensional great

circle. However in phase (c) the gas contribution to the boundary stress tensor is smooth on S3.
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Part II: Large Charge

Gubser pointed out in 2008 that black holes are sometimes
unstable at large charge[a].
Gubser’s instability is simplest to understand for small
charged black holes. Consider a mode of charge e, and
energy ω incident on a flat space black hole with chemical
potential µ. Whenever µe > ω this mode exhibits the
superradiant phenomenon. The AdS box turns this into an
instability. End point is a small black hole with µ = ω

e ,
immersed in an AdS size cloud of the charge e scalar. Non
interacting mix of the black and condensate.
Picture correct only for very small black holes. Corrected
order by order in black hole size[b]. Condition for instability-
and nature of final state - extremely complicated when
black hole large. 100s of studies. Almost all numerical.

[a] S. Gubser, ArXiv: 0801.2977 [b] P. Basu, S. Bhattacharyya, R. Loganayagam, S.M. , ArXiv: 1003.3232
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Large Charge in N = 4 Yang Mills

With a convenient choice of normalization for gauge fields,
small black holes have µ ≤ 1, and so are all ‘Gubser
stable’ provided that every bulk field has e/∆ < 1. On the
other hand, small charged black holes are unstable in a
range of energies around extremality if there exists even
one bulk boson with e/∆ > 1.
Criterion less universal than angular momentum. We turn
to the study of a specific theory: N = 4. For simplicity
specialize to the case of equal SO(6) Cartans
Q1 = Q2 = Q3 = Q.
As in the case of angular momentum, black holes exist
only at energies above extremality. Once again, the mass
of extremal black holes at charge Q turns out to be strictly
greater than the BPS bound E = 3Q. Bit odd. Sounds like
something should intervene.
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Existence Region for RN AdS black holes
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Gubser Instabilities in N = 4 Yang Mills

In N = 4 Yang Mills, the BPS bound asserts that e/∆ ≤ 1.
Chiral operators (like Tr(X 2 + Y 2 + Z 2)) saturate this
inequality. Small BHs in N = 4 lie on the edge.
Infact it turns out that IIB Sugra admits a consistent
truncation to Einstein Maxwell plus a single charged scalar
field dual to that mode [a]. A detalied analysis of this
consistent truncation (analytical for small black holes [a] but
numerical for general black holes [b]) shows that these
black holes are infact unstable in a band around
extremality. The curve separating stable from unstable BHs
lies at µ = µc(q), where µc(q) = 1 + 2q +O(q2). Note
µc(q) > 1. Numerics show inequality true at all values of q.
End point of this instability is a ‘hairy black hole’. This
phase extends down all the way to the BPS bound (where
it reduces to a ‘soliton’). Removes the troubling gap.

[a] S. Bhattacharyya, S.M, K. Papadodimas, ArXiv: 1005.1287 [b] J Marcevicuite , J. Santos , ArXiv:1806.01849
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Importance of higher chiral modes
The Ang. Mom. and charge stories have some differences.
First, Ang. Mom. involves an infinite number of modes,
while the Gubser instability involves single bulk scalar field.
Second, the instaibility condition - and final entropy formula
- was extremely simple for Grey Galaxies, but complicated
-and only numerically known - in the case of charge. [a]

Now N = 4 Yang Mills does have an infinite number of
chiral modes - Tr(X n + Y n + Z n) - all of which saturate the
BPS bound. While it was self consistent to truncate to the
lowest of these, its not clear that this truncation captures
the dominant instability. Could the chiral operators at large
n play an important role? Answer: Yes, in a manner that is
surprisingly easy to analyse [2].
Recall pure AdS hosts dual giants. Duals with charge Q

live at radius r =
√

Q
N . Key point: when Q ≫ N, r ≫ 1.

[a] Except in the small charge limit, in which the entropy formula for the hairy black hole is reproduced by a non

interacting mix of black hole and condensate.
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Instability at µ > 1
It follows that large dual dual giants - those with charge
Q ≫ N - also exist in the black hole background, and that
their properties are essentially unaffected by the black
hole. Since dual giants have E = Q, it follows immediately
that any black hole with µ > 1 in unstable to their emission.
In the canonical ensemble this follows because
e−β(E−µQ) > 1 (for these duals) when µ > 1.
In the microcanonical ensemble, the duals and BHs are
effectively non interacting - except for one effect. The
nucleation of each giant reduces the effective black hole
value of N by one unit. A short computation shows that the
emission of n dual giants of total charge Nqtot changes the
entropy of the seed black hole by

δS = β(µ− 1)qtot + 2Nnβ (ϵBH − µqBH − TsBH) (7)

When µ > 1 this is positive for large enough qtot. Turns out
(ϵBH − µqBH − TsBH) is always negative, so δS maximum
at n = 1.
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Non Intreacting Mix

Recall, however, that RNAdS black holes became ‘Gubser
Unstable’ only at µ > 1. Consequently the dual giant
instability kicks in before the Gubser instability. Morever, it
turns out that all the ‘Gubser stabilized’ black holes above
have µ > 1. So they are all, in turn, unstable to emission of
duals.
The end point of this instability is a single dual giant
surrounding a µ ≈ 1 black hole. The entropy of this
configuration (see next slide) turns out to be always greater
than that of the Gubser stabilized black hole.
It follows, therefore, that the Gubser mechanism is
replaced by ‘grey dual giants; in the phase diagram of
N = 4 Yang Mills. We believe that the situation is simiar
for, e.g. ABJM theory or the M5 brane theory....
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Entropy of Dual Giant Dressed Black Holes
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Part III: Angular Momentum and Charge

Staying with N = 4 Yang Mills theory - also with black holes
with Q1 = Q2 = Q3 = Q, let us turn on angular momentum with
J1 = J2 = J. We have a 3 parameter set of (traditional) black
holes with these charges, parameterized by E , Q and J. This
space hosts 4 interesting two dimensional surfaces

(a) The BPS Surface E = 3Q + 2J
(b) The surface of extremal black holes
(c) The surface ωBH = 1
(d) The surface µBH = 1

Remarkably enough, these four surfaces all coincide on a
single curve, the curve of Gutowski Reall SUSY black holes.
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Constant J Slice of BH Configuration Space
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End point of the instabilities

All points below the ω = 1 curve are unstable to the
formation of a Grey Galaxy. All points below the µ = 1
curve are unstable to the formation of Grey dual giants.
Note that these two conditions are never simultaneously
obeyed (no nontrivial competition between grey galaxies
and grey dual giants)
Both phases above extend all the way down to the BPS
plane, giving a full cover of all charges allowed by the BPS
bound.
In summary, the phase diagram of N = 4 (with the charges
considered) has three distinct phases with sharp phase
transitions between them. Black holes with µ < 1 and
ω < 1. Grey galaxies. Grey dual giants.
Note that nonsusy extremal black holes never appear
anywhere in this phase diagram.
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Constant J Slice of Phase Diagram
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Part IV: Supersymmetry

Atleast naively, the phase diagram described above
descends down to the BPS sheet, suggesting that this
sheet is divided into to parts separated by the curve of
Gutowski Reall SUSY black holes. One side of this curve
hosts grey galaxies: the other hosts grey dual giants.
However, our construction of both grey dual giants and
grey galaxies was approximate, with corrections in a power
series in 1

N . Susy, on the other hand, is a yes/no question.
Can we be sure that our apparently BPS grey dual giants
and grey galaxies are actually susy? We will now give 3
bits of evidence that this is indeed the case [3].
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Genuine Supersymmetry
One can construct dual giant gravitons in the background
of a Gutowski Reall black hole, and demonstrate (at the
level of probe analysis) that it is exactly supersymmetric -
even at finite distances from the black hole [a]. Suggests
that Giant Dressed BHs are exactly susy.
At the linearized level, gravitions at large angular
momentum have been argued to be both susy as well as
regular at the horizon [b]. There is also direct evidence for
gravitons dressing black holes from the direct evaluation of
the susy cohomology at SU(2) and SU(3) [b].
Finally (in the case of angular momentum), there is a
second solution - the so called RBH (see [1])- which can
be constructed exactly (by quantization of a coset of
SO(D,2)), is exactly susy, and gives rise to the same
phase diagram as Grey Galaxies.

[a] O. Aharony, F. Benini, O. Mamroud, E.Milan, ArXiv: 2104.13932

[b] S. Choi, S. Kim, E. Lee, S. Lee, J. Park ArXiv: 2304.10155. Also see S. Kim’s 2023 Strings talk
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‘5 parameter’ set of susy black holes

It thus seems that Gutowski Reall black holes can be
dressed with either angular momentum or charge in a
genuinely supersymmetric manner. This yields a prediction
for the entropy of BPS states as a function of all 5 charges.
This is a prediction could be taken as a target of the
‘cohomology programme’ we heard about from Chi Ming
earlier in this meeting.
Note that we have two different phases with a phase
transition on the GR sheet. The entropy at any point in
each of the phases is given by the entropy of the
corresponding ‘shadow’ GR black hole, where the shadow
rules are illustrated on the next slide.[a]

[a] See S. Lee and F. Larsen, ArXiv: 2405.17648 for a recent field theory ‘derivation’ of the shape of this sheet.
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Supersymmetric Entropy when J1 = J2 = J
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Figure: Entropy of Susy black holes with J1 = J2 = J and
Q1 = Q − 2 = Q3 = Q

Shiraz Minwalla



J1 ̸= J2

The last four or five years has seen dramatic progress in
the computation of the superconformal index - and its
match with susy black holes. In the rest of this talk I will
discuss a possible implication of our results for the
superconformal Index.
The potentially interesting application of our results occurs
when J1 ̸= J2. I do not have the time to describe the
generalization in detail: please see D. Jain’s poster. As
above, the entropy for any value of the charges is given by
a ‘shadow’of the given charge point on the sheet of susy
black holes. In [3] we work out the rules that determine the
shadow of every point in charge space. In the rest of this
talk I simply use these rules without derivation. In what
follows, I use the notation JL = J1+J2

2 and JR = J1−J2
2

While our construction covers a large codimension 0 of charge space, it leaves out some allowed region(from CFT)

of charge space. We do not have the conjecture of the entropy at these charges.
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The Index

The superconformal index is labelled by Q + JL = α, and
JR. It receives contributions from all states with charges
(α− n

2 ,
n
2) where n is an integer that ranges from 0 to 2α.

The index counts all these states, but with a catch. States
at even n are counted with a plus sign, while states at odd
n are counted with a minus sign. The index is protected,
and relatively easy to compute in the field theory.
The impressive computations over the last 4-5 years, find a
perfect match between the leading order result for the
index and susy black hole entropy at the same value of α
and JR (this match is best established when JR = 0, but
has also been established when JR is nonzero, but not too
large.
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Index and Black Holes

If one believed that susy states exist only on a
codimension one submanifold in the space of charges,
then one could explain the match between the index and
black hole entropy as follows.
The index receives contributions from states at all values of
n behind. However it just so turns out that a significant
number (order eN2

) of black hole states exist only at one
value of n - that corresponding to the black hole. For this
reason the sum over n is dominated by the value of n
corresponding to the black hole.
However we have argued that large number of susy states
exist at generic values of the charge. How then can we
explain the matching of the index with black holes? Lets
investigate this for different values of (α, JR).
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The Shadow of the Index line at small JR
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The Shadow of the Index line at larger JR
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Phase Transition in the Index?
The Index can be written as Tr

(
(−1)2JLe−νL(Q+JL)−νRJR

)
.

The purple curve occurs when the chemical potentials of
the black hole obey νR = νL. [a]

Atleast naively, our analysis suggests that the
microcanonical version of the index undergoes a phase
transition as a function of JR. We would predict a large JR ’
phase in which the Index is dominated by a
supersymmetric grey galaxy (or RBH).
This prediction is tentative, however, because the effect of
the oscillating phase has been ignored. It is possible that
the oscillations suppress the contribution of an apparently
dominant configuration. Would be great to have direct
confirmation from field theory.

[a] In the Yellow region νR > νL. It is unclear that the index is well defined in the canonical ensemble with these

chemical potentials (because, when Re(νR ) > Re(νL), the contribution of the derivative with JL = JR = 1
2 seems

to diverge): note analogy with Part I. However, it is possible that the rapid osciallations (associated with the

imaginary parts of the black hole chemical potential) allow for enough cancellation to permit a defiition via analytic

continuation. Shiraz Minwalla



Conclusions

New Black Holes dominate microcanonical phase diagram
of N = 4 Yang Mills. Many new phases. Sharp phase
transitions. Note that extremal non supersymmetric black
holes never appear in the phase diagram.
The solutions are all extremely simple. An effectively non
interacting mix of the black hole and gas (for angular
momentum) or giant dual gravitons (for charge).
Noninteracting nature a consequence of large separation
in the radial direction.
New phases should continue to exist at large but finite
values of λ. Possible they exist all the way down to λ = 0
and can be seen in perturbation theory.
Construction gives atleast a lower bound for
supersymmetric cohomology as a function of all 5 charges.
Also suggests a possible phase transition in the Index.
Would be great to verify from field theory.
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Back Up: J1 ̸= J2 : I

This story generalizes in an interesting way to
configurations with J1 ̸= J2, i.e. configurations with JR ̸= 0.
We must first understand he structure of suprsymmetric
black holes with JR ̸= 0.
In the 3d space spanned by JL, Q and JR, the space of
susy black holes make up a two dimensional sheet. One
way to visualize this sheet as a union of curves, one at
each fixed value of Q.
At every fixed Q one finds a finite arc. The arc gets bigger
on increasing Q. Entropy decreases on increasing JR (or
JL) at fixed Q, but increases on increasing Q at fixed JL
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Back Up: J1 ̸= J2 : II
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Figure: Constant Q cross section of the three dimensional space
(Q, JL, JR). Susy black holes exist at all points on the blue arc. Their
size goes at the red dot. Entropy maximum on black (GR) dot.
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Back Up: J1 ̸= J2 : III (Top view)

Zero Entropy Gutowski Reall

0 2 4 6 8 10

0

50

100

150

200

250

300

Q

J L

Shiraz Minwalla



Back Up: J1 ̸= J2 IV

Now consider RBHs constructed out of these black holes.
These RBH’s are given by ∂n1

z1
∂n2

z2
P. The combination of

derivatives carries JL = n1+n2
2 and JL = n1−n2

2 . Clearly

|JR| ≤ JL.

For this reason the RBHs built out of any given black hole
lie in a wedge with apex at that black hole. The opening
angle of the wedge is 90 degrees.
Consider any point on the plane of the previous figure.
This point lies in the wedge of many different black holes.
We get the maximum entropy if we choose the apex black
hole to have the lowest possible |JR|.
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Back Up: J1 ̸= J2: V
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Figure: Phase diagram of RBH soluions at fixed Q. The distiction
between regions IIA and IIB will become clear later. Note no solutions
exist in region III. Also wedges never intersect the susy BH curve.
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Backup: Inclusion dual dressed giants
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Figure: Constant Q1 = Q2 = Q3 = Q slice of the susy phase diagram.
Regions 1 and 2 host distinct susy Grey Galaxies (or RBHs). Region
3 hosts Dual Dressed susy black holes.
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Back Up: When the index line misses the black hole
sheet
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Figure: Once again QAB gives the dominant contribution.
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Back Up: Possibility of Phase Cancellations
The discussion above suggests the possibility that the
index undergoes a phase transition at values of α, JR that
lie on the purble curve. If this suggestion is correct the final
situation will be very similar to the discussion in part I, with
the index being dominated by the pure black hole at small
JR, but by a susy grey galaxy (or RBH) at larger JR

However it is by no means certain that this possibility is
indeed borne out. The possible loophole lies in the fact that
the summation over the index line has alternating signs.
For example consider the function

(1 + x)N2

The binomial expansion of this function has N2 terms. The
magnitude of these terms is the same when for x = ±α.
When x = α the function is well approximated, at large N2,
by the largest term in the series. Clearly, however, the
same is not true at x = −α.
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