- Targets
- $e^+e^- \to \gamma\gamma$ applied to WW
- ${\rm e^+e^-} \rightarrow \gamma\gamma$ considerations
- Other possibilities for absolute and relative luminometers.

Aims, Targets, Goals for Absolute Luminosity Precision

 $\sigma_{WW}~(\sqrt{s}=250~{
m GeV})=37~{
m pb}$

- Match statistical precision of the accelerator. Denominator normalizing processes ideally should have cross-sections exceeding the numerator.
- Example 1 (ILC): WW at 250 GeV. With 0.9 ab^{-1} (LR) \rightarrow 1.7 \times 10⁻⁴.
- Example 2 (10^{12} Z with FCC) $\rightarrow 1.0 \times 10^{-6}.$

What is realistically achievable is another matter.

New Luminosity Treatment for ILC

• Prior study assumed that the absolute luminosity can be measured to 0.1% using low angle Bhabhas (LABH). Main issues: theory and acceptance definition (including beam-beam).

Now,

- Model LABH with $\sigma_{161} = 12$ nb. Use for relative luminosity (per scan point).
- Use QED process $e^+e^- \rightarrow \gamma\gamma$ for absolute luminosity. Currently assume $\sigma_{161}=37.5$ pb (35 mrad), and systematic precision of 0.01%. (See CCMNP arXiv:1906.08056 for theoretical justifications). At WW threshold, the $e^+e^- \rightarrow \gamma\gamma$ cross-section is about 10 times the unpolarized WW one.
- Model the event counting statistics for Bhabhas and $e^+e^- \to \gamma\gamma.$

Key Complementary Features of $e^+e^- \rightarrow \gamma\gamma$

- Lowest angle acceptance not so critical. $d\sigma/d\cos\theta \sim \frac{1+\cos^2\theta}{\sin^2\theta}$
- $A_{LR} = 0$. But only -+ and +- beam helicities. (e⁺e⁻ also has --,++). So LR, RL cross-sections are 75 pb each!
- $\bullet\,$ Aids in measuring polarization! Constraints on Bhabha backgrounds to $\gamma\gamma.$
- $\bullet\,$ No beam-beam. Need ${\rm e}/\gamma$ discrimination in LCAL to exploit lowest angles.

 $e^+e^- \rightarrow \gamma\gamma$ at $\sqrt{s} = 161 \text{ GeV}$

Minimum polar angle ($^\circ$)	$\sigma_{\gamma\gamma}$ (pb)
45	5.3
20	12.7
15	15.5
10	19.5
6	24.6
2	35.7

- Unpolarized Born cross-sections. Typical higher order effects 5 10% increase.
- Note not negligible electroweak box effects near WW threshold. (1.2% at widest angle).
- electron-photon discrimination can be aided by much better azimuthal measurements given the bending of the electrons in the B-field.
 Figure of merit: *Bz_{LCAL}*. Here ILD has 7.7 Tm. OPAL was 1.04 Tm.

I now have RACOONWW, RADCOR (e⁺e⁻ $\rightarrow \gamma\gamma$), BHWIDE, and TEEGG working. TEEGG deals with the radiative Bhabha process e⁺e⁻ \rightarrow e⁺e⁻ $\gamma(\gamma)$ in QED dominated t-channel configurations.

- There are 3 main configurations: ETRON, GAMMA, and EGAMMA where either only 1 electron, 1 photon, or an (electron-photon) pair is visible at wide angle, and the other particle(s) are unobserved at low angle.
- Cross-sections are not too shabby. At $\sqrt{s} = 91.2$ GeV.
- $\sigma_{e\gamma} = 1.0 \text{ nb} (5^{\circ}, 25 \text{ mrad})$
- $\sigma_e = 52 \text{ nb} (5^\circ, 25 \text{ mrad}, x_e > 0.025)$

I am particularly intrigued by $e\gamma$. This is quasi-real Compton scattering and is more statistically powerful than ${\rm e^+e^-}\to\gamma\gamma$, and features coplanar $e\gamma$ with mass between 0.5 \sqrt{s} and \sqrt{s} .

[Does anyone have a working BABAMC configuration?]