New ATLAS results in monoHiggs to tau tau and combination for DM limits

14.06.2023 Erlend Aakvaag on behalf of analysis team: Nikolai Fomin, Anna Lipniacka and Julia Djuvsland

Dark matter at the LHC

- The presence of Dark Matter (DM) has been unequivocally established from experimental observations
- Basic DM requirements (so far):
 - Electrically neutral
 - Colorless
 - Stable (Over the lifetime of the universe)
 - (Very) Weakly interacting
- Significant number of particle-DM candidates from BSM theories
 - Share some common distinctive properties that can be exploited in the search for DM
- Colliders: DM particles expected to be produced via the mediated interaction with SM particles
 - Minimal experimental signature: Excess of events with a visible final state particle, X, recoiling against E_T^{miss} —> Mono-X

Mono-Higgs searches

- Visible SM particle can be jet, photon, W/Z, top quark or a Higgs boson
 - Typically stronger couplings to light quarks and gluons than DM particles
 - Suppressed for Higgs —> Mono-Higgs topologies are only significantly sensitive to scenarios
 where a Higgs boson couples directly to some BSM particle participating in the DM production
 - Mono-Higgs searches therefore give access to the structure of the BSM physics responsible for DM production —> Of interest at the LHC
- Many mono-Higgs searches have been performed by ATLAS and CMS in different Higgs decay channels for LHC Run 2:
 - $h \rightarrow b\bar{b}$ (<u>ATLAS</u>, <u>CMS</u>)
 - $h \rightarrow \tau^+ \tau^- (\underline{\text{CMS}})$
 - $h \rightarrow \gamma \gamma (\underline{\text{ATLAS}}, \underline{\text{CMS}})$
 - $h \rightarrow VV(\underline{CMS})$
- Focus of this talk: Recent ATLAS result in $\tau^+\tau^-$ hadronic channel and combination
 - Results can be found here: 2305.12938
- The design of these experimental searches can in general be kept independent of theoretical models
- Some theoretical benchmarks still needed

Benchmark model: 2HDM+a

- One straightforward extension of the SM is the SM with two Higgs doublets. (2HDM)
- · Gives 5 physical Higgs states after electroweak symmetry breaking:
 - Two neutral scalar states: \boldsymbol{h} and \boldsymbol{H}
 - A neutral psuedoscalar state: \boldsymbol{A}
 - Two charged scalar states: H^{\pm}
- The <u>2HDM+a</u> model further extends the baseline 2HDM with an additional pseuodoscalar singlet: a
 - · Mediates the interactions between the visible and dark sector
- Model also includes a DM candidate (χ) which is a singlet under the SM Gauge group
- · Simplest Gauge-invariant renormalisble extension of psuedoscalar mediator models
- Model leads to $h + E_T^{miss}$ signature through gluon-gluon fusion and $b\bar{b}$ production modes.

2HDM+a: Benchmark parameters used in searchers

- The 2HDM+a model is described by 12 new parameters
- Following the <u>LHC DM working group</u> recommendations 2-dimensional parameter scans are performed with the following choices:
 - Masses of CP-odd Higgs Boson, A, CP-even Higgs boson H and charged Higgs bosons, $H^{\pm}: m_A = m_H = m_{H^{\pm}}$
 - DM dark fermion mass: $m_{\chi} = 10 \text{ GeV}$
 - DM Yukawa coupling to pseudoscalar *a*: $y_{\chi} = 1$
 - . Mixing angle α (between h and H) and β (tan $\beta = \frac{v_1}{v_2}$) satisfies: $\cos(\alpha \beta) = 0$
 - Quartic couplings of the pseudo scalar potential and the Higgs potential: $\lambda_{1P} = \lambda_{2P} = \lambda_3 = 3$
 - Mass of the lightest Higgs boson: $m_h = 125 \text{ GeV}$
 - Mixing angle between the two pseudoscalars satisfies: $\sin\theta=0.35$ or $\sin\theta=0.7$
- Scans are performed in the following planes keeping all other parameters fixed:
 - $m_A m_a$ plane for tan $\beta = 1.0$ and sin $\theta = 0.35$ (34 signal points)
 - $m_A \tan \beta$ plane for $m_a = 250$ GeV and $\sin \theta = 0.7$ (72 signal points)

Analysis strategy and event selection

- Select events in three types of regions:
 - 1. Define Signal regions (SRs) by selecting events where signal sensitivity is optimised
 - 2. Define Control regions (CRs) enriched in events of a particular background process —> Fit to data to ensure proper normalisation of dominant backgrounds
 - 3. Define Validation regions (VRs) in between SRs and CRs to validate extrapolation of background normalisation factors from the CRs to the SRs.

- Signal signature is two tau leptons + E_T^{miss}
- Further event requirements to suppress different background sources
 - Selection optimised with Asimov significance
- Two SRs defined to target different parts of the parameter space:
 - SR low m_A (4 bins)
 - SR high m_A (2 bins)
- Both SRs binned in $m_T(\tau_1, E_T^{miss}) + m_T(\tau_2, E_T^{miss})$

$$m_T(\tau_1, E_{\rm T}^{\rm miss}) = \sqrt{2p_{\rm T}(\tau_1)E_{\rm T}^{\rm miss}(1 - \cos\Delta\Phi(\tau_1, p_{\rm T}^{\rm miss}))}$$

Background estimation

- Two types of backgrounds:
 - Events where both taus are true: Estimated with MC and referred to as the original process, e.g $Z(\tau \tau)$
 - Events with at least one fake tau: Modelled using the data-driven fake factor method, collectively referred to as "Fake taus". E.g $W(\tau\nu)$ and QCD background.
- Dominant backgrounds:
 - After preselection: $Z(\tau\,\tau)$ and to a lesser extent $t\,\bar{t}$ and fake background
 - Higgs and diboson contribution become more relevant as selection gets tighter
- CR defined for:
 - $Z(\tau \tau)$ and top ($NF_{top} = 0.82$, $NF_{Z(\tau \tau)} = 1.04$)
- VR defined for:
 - + $Z(\tau\,\tau),$ top, Diboson/Higgs and fake taus and combined total background
- All VRs show agreement within one standard deviation between SM prediction and data —> Good modelling observed for SM backgrounds

Uncertainties

- Uncertainties considered:
 - Statistical: Statistical uncertainties in signal and background modelling
 - Theoretical: Generator-modelling-related uncertainties, cross-section uncertainties, and uncertainties related to the choice of PDF set. Assumed to be uncorrelated
 - Experimental: Uncertainties related to reconstruction, identification, correction and calibration of the various physics objects. Assumed to be correlated
 - · Fake taus: Uncertainties on the fake modelling
- Included in Likelihood fits as nuisance parameters with Gaussian probability densities.

Region $m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$ [GeV]	$Low_{m_A} \in [100, 250]$	$Low_{m_A} \in [250, 400]$	$Low_{m_A} \in [400, 550]$	$Low_{m_A} > 550$	$\begin{array}{l} \operatorname{High}_{m_A} \\ \in [400, 750] \end{array}$	$\begin{array}{l} \operatorname{High}_{m_A} \\ > 750 \end{array}$
Theoretical	15.9%	20.9%	15.4%	13.3%	14.2%	21.7%
Fake τ -leptons	6.2%	19.1%	6.0%	3.0%	4.0%	13.2%
Jets	6.2%	7.9%	5.2%	11.0%	3.4%	7.9%
True τ -leptons	1.6%	3.1%	7.0%	10.6%	4.8%	5.0%
Normalisation	4.5%	4.0%	4.8%	8.1%	4.8%	6.1%
MC statistical	7.6%	13.2%	9.3%	15.6%	9.2%	22.2%
Cross-section	2.7%	4.7%	10.0%	9.8%	11.3%	8.5%
Other	4.1%	2.7%	5.3%	6.3%	4.9%	4.5%
Total	20.8%	32.8%	23.8%	28.3%	22.2%	36.3%

Results and fit models

- No significant excess observed —> Setting limits
- In addition to background-only fit two additional fits are performed for the signal in the SRs:
 - Model dependent (exclusion) fit: All CRs and (Multibin) SRs participate in the fit. Signal strength is a free parameter and fit is performed for each signal point individually —> Exclusion contour
 - **Model independent fit:** All CRs and each (single-bin) SR used in the fit. A generic signal model is assumed with free floating normalisation in the SR —> Upper limit on signal strength

Limits

Model dependent exclusion contours

- Results obtained using the CL_s prescription —> Points within the contour excluded at 95% confidence level (CL)
- $m_A m_a$ plane: Models with m_a up to 300 GeV excluded at $m_A = 800$ GeV
- $m_A \tan \beta$ plane: Models with $\tan \beta \le 1$ excluded for m_A up to 900 GeV
- Model independent upper limits .
 - Depending on the bin: upper limits on the visible cross section (σ_{vis}) is set between 0.04 and 0.08 fb at 95% confidence level (CL)

Signal region	$\sigma_{ m vis}$ [fb]	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_b	$p_0\left(Z ight)$
$\begin{array}{l} \operatorname{Low}_{m_A} \operatorname{SR} \\ m_{\mathrm{T}}^{\tau_1} + m_{\mathrm{T}}^{\tau_2} \end{array}$					
[100, 250] GeV	0.08	10.7	$12.5^{+5.2}_{-3.5}$	0.27	0.86 (-1.07)
[250, 400] GeV	0.07	9.1	$7.6^{+3.1}_{-1.6}$	0.72	0.30 (0.53)
[400, 550] GeV	0.08	10.8	$8.9^{+3.4}_{-2.3}$	0.75	0.26 (0.65)
> 550 GeV	0.04	5.8	$6.0^{+2.6}_{-1.6}$	0.42	0.61 (-0.29)
$ \begin{array}{l} \text{High}_{m_A} \text{ SR} \\ m_{\text{T}}^{\tau_1} + m_{\text{T}}^{\tau_2} \end{array} $					
[400, 750] GeV	0.05	7.6	$8.8^{+3.1}_{-2.4}$	0.34	0.85 (-1.03)
> 750 GeV	0.04	5.4	$4.6^{+1.8}_{-0.8}$	0.67	0.34 (0.42)

10

Combination with other channels

- ATLAS recently published a statistical combination of multiple channels: 2306.00641
- · Statistical combination performed by constructing a combined likelihood and maximising the profile likelihood ratio
- $Z(\ell \ell) + E_T^{miss}$ and $h(b\bar{b}) + E_T^{miss}$ dominate the sensitivity across the mass plane, complimentary sensitivity from $tbH^{\pm}(tb)$ • Only these channels used for combination contour
- $h(\tau \tau) + E_T^{miss}$ show similar $m_A m_a$ dependence to $h(b\bar{b}) + E_T^{miss}$, but notably lower significance due to smaller branching ratio
 - Comparable sensitivity in low $m_{\!A}$ region
 - Offers some sensitivity in the low $\tan\beta$ region

Summary

- Presented the search for $E_T^{miss} + h(\tau \tau)$
 - New analysis in ATLAS —> First exploration of mono-Higgs signature in hadronic ditau decays
 - No excess of data found over predicted SM background
 - + 95% CL limits set in in the $m_a-m_{\!A}$ plane and $m_{\!A}- aneta$ plane
 - Model independent limits set on the visible cross section of BSM physics with $E_T^{miss} + h(\tau \tau)$ signature
- Analysis included in the combination paper:
 - Similar dependence on $m_A m_a$ as $h(b\bar{b}) + E_T^{miss}$, but lacking sensitivity due to smaller branching ratio
 - $E_T^{miss} + h(\tau \tau)$ offers comparable sensitivity in low m_A region in the $m_A m_a$ plane and low $\tan \beta$ region in the $\tan \beta m_A$ plane

Thank you!

13

UNIVERSITETET I BERGEN

Some variable definitions

• Transverse mass m_T :

$$m_T(\tau_1, E_{\rm T}^{\rm miss}) = \sqrt{2p_{\rm T}(\tau_1)E_{\rm T}^{\rm miss}(1 - \cos\Delta\Phi(\tau_1, p_{\rm T}^{\rm miss}))}$$

- \mathcal{M}_T^{tot} $m_T^{tot} = \sqrt{(p_T(\tau_1) + p_T(\tau_2) + p_T^{miss})^2 - (p_x(\tau_1) + p_x(\tau_2) + p_x^{miss})^2 - (p_y(\tau_1) + p_y(\tau_2) + p_y^{miss})^2}$
- Asimov significance:

$$Z_A = \left[2 \left((s+b) \ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2} \ln\left[1 + \frac{s\sigma_b^2}{b^2+b\sigma_b^2}\right] \right) \right]^{\frac{1}{2}}$$

CR/VR selections

Variable	Z CR	Z VR	Fake Tau VR	Top CR	Comb VR	Diboson VR
Charge(τ_1, τ_2)	OS	OS	SS	OS	OS	OS
N_{b-jet}	0	0	0	1	0	0
$\Delta R(\tau_1, \tau_2)$	< 2	< 2	> 2	> 1	> 2	< 2
$m_{ m vis}(au_1, au_2)$	< 40 GeV	[40, 75] GeV	-	-	> 125 GeV	[40, 75] GeV
$m_{ m T}^{ m tot}$	> 50 GeV	> 50 GeV	-	-	-	[50, 400] GeV
$m_{ ext{T}}^{ ilde{ au}_1}$	-	-	-	-	-	> 60 GeV
$m_{ m T}^{ au_2}$	-	-	-	-	-	> 20 GeV
$m_{\rm T}^{{\hat{ au}}_1} + m_{\rm T}^{{ au}_2}$	-	< 100 GeV	-	-	-	> 140 GeV
$p_{\mathrm{T}}^{ au_{1}+ au_{2}}$	-	-	-	-	< 125 GeV	-

) 200 m_T¹2 [GeV]

10

Ditau+MET triggers

Running period	Trigger name	L1	Lumi
2015 - 2017	HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_xe50	L1_TAU20IM_2TAU12IM_XE35	77.2 fb^{-1}
parts of 2017	HLT_tau60_medium1_tracktwo_tau25_medium1_tracktwo_xe50	L1_TAU40_2TAU12IM_XE40	$3.3 \ {\rm fb}^{-1}$
2018 period B-K	HLT_tau60_medium1_tracktwoEF_tau25_medium1_tracktwoEF_xe50	L1_TAU40_2TAU12IM_XE40	$18.3 \ {\rm fb}^{-1}$
2018 from period K on	HLT_tau60_medium1_tracktwoEF_tau25_medium1_tracktwoEF_xe50 OR	L1_TAU40_2TAU12IM_XE40	40.2 fb^{-1}
	${\tt HLT_tau60_mediumRNN_tracktwoMVA_tau25_mediumRNN_tracktwoMVA_xe50}$		

- HLT_tau35 trigger is used for the majority of 2015-2017, 3.3 fb $^{-1}$ are recovered with HLT_tau60
- Trigger plateau (leading tau p_T) dependent on the period
- Scale factors from tau trigger group, binned in tau p_T and number of charged tracks
- Derive additional SFs as a function of E_T^{miss} for 2015 2017/mc16a-d
- 2018/mc16e agreement is reasonable
- Offline taus are geometrically matched to the trigger ones.

