

Mono-Higgs searches at the HL-LHC

Amit Adhikary

University of Warsaw, Warsaw

In collaboration with

Kazuki Sakurai, Kodai Sakurai (Warsaw) Erlend Aakvaag, Nikolai Fomin (Bergen)

Conference of Norwegian Financial Mechanism "Early Universe" project Jun 14-15, Bergen

Inert Doublet + Pseudoscalar (IDM + PS) Model

Additional fields

SM Higgs potential :
$$V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \left[\Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H+i\eta_1) \end{pmatrix} + \eta_2 \right]$$

no Yukawa

 $V = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2}\lambda_1 |\Phi_1|^4 + \frac{1}{2}\lambda_2 |\Phi_2|^4$

The scalar potential :

$$\begin{pmatrix} A\\ a \end{pmatrix} = \begin{pmatrix} c_{\theta} & -s_{\theta}\\ s_{\theta} & c_{\theta} \end{pmatrix} \begin{pmatrix} \eta_{1}\\ \eta_{2} \end{pmatrix} + \frac{\mu_{\eta}^{2}}{2}\eta_{2}^{2} + \frac{\lambda_{\eta}}{4}\eta_{2}^{4} + \frac{\lambda_{1\eta}}{2}|\Phi_{1}|^{2}\eta_{2}^{2} + \frac{\lambda_{2\eta}}{2}|\Phi_{2}|^{2}\eta_{2}^{2} + \mu_{12\eta}\{\eta_{1}^{2}, \eta_{2}^{2}, \eta_{2$$

Higgs bosons : h, H, H^{\pm} , A, a $(m_A > m_a)$

 $\begin{aligned} \frac{\mu_{\eta}^{2}}{2}\eta_{2}^{2} + \frac{\lambda_{\eta}}{4}\eta_{2}^{4} + \frac{\lambda_{1\eta}}{2}|\Phi_{1}|^{2}\eta_{2}^{2} + \frac{\lambda_{2\eta}}{2}|\Phi_{2}|^{2}\eta_{2}^{2} + \mu_{12\eta}\{i\Phi_{1}^{\dagger}\Phi_{2}\eta_{2} + h.c.\}, \\ (m_{A} > m_{a}) \qquad a \equiv \text{Dark matter candidate} \end{aligned}$

12 input parameters :
$$v, m_h, \mu_2^2, n$$

 $\lambda_{hAA} = -\frac{c_\theta^2(m_A^2 - \mu_2^2)}{c_\theta^2(m_A^2 - \mu_2^2)}$

Relevant couplings fixed by the Model :

$$egin{aligned} v, & m_h, & \mu_2^2, & m_a, & m_A, & m_H, & m_{H^\pm}, & heta, & \lambda_2, & \lambda_\eta, & \lambda_{\eta 1}, & \lambda_{\eta 2}, \ \lambda_{hAA} &= -rac{c_ heta^2(m_A^2 - \mu_2^2)}{v} - rac{1}{2}vs_ heta^2\lambda_{1\eta}, & g_{AHZ} &= -rac{g_Z}{2}c_ heta\,, & g_{aHZ} &= -rac{g_Z}{2}s_ heta, \ \lambda_{hAa} &= -rac{s_ heta^2(m_a^2 - \mu_2^2)}{v} - rac{1}{2}vc_ heta^2\lambda_{1\eta}, & g_{AHZ} &= \pm irac{g_Z}{2}c_ heta\,, & g_{aHZ} &= -rac{g_Z}{2}s_ heta, \ g_{AH^\pm W^\mp} &= \mp irac{g}{2}c_ heta\,, & g_{aH^\pm W^\mp} &= \mp irac{g_Z}{2}s_ heta, & g_{HH^\pm W^\mp} &= \mp irac{g_Z}{2}s_ heta, & g_{HH^\pm W^\mp} &= \mp irac{g_Z}{2}s_ heta\,, & g_{H^\pm W^\mp} &= \mp irac{g_Z}{2}s_ heta\,, & g_{H^\pm W^\mp} &= \mp irac{g_Z}{2}s_ heta\,, & g_{$$

IDM + PS Model : Constraints

... Calculated by Kodai

IDM + PS Model : Signal and parameter values

No current search for mono-Higgs in VBF channel. Appreciable production rate for VBF production. Advantage of having VBF topology for reducing backgrounds.

Initial values :

Mono-Higgs Signal and Backgrounds

Feynman diagrams for the **signal** process : $pp \rightarrow aAjj$, $A \rightarrow ah$, $h \rightarrow b\bar{b}$

VBF topology, Final state : **2 b-jets + 2 forward light-jets +** E_T

Backgrounds: $t\bar{t}$, QCD 2b 2j 2 ν , Vh + jets, VV + jets, $t\bar{t}X$ + jets, single t(V = W/Z) (X = h/W/Z)

ggF $h \rightarrow b\bar{b} + E_T$ analysis : ATLAS-CONF-2021-006 VBF $h \rightarrow b\bar{b}$ analysis : 2011.08280

Collider Analysis : Event selection

Signal process is generated with IDM + pseudoscalar Model.

Madgraph (parton level process) → Pythia (showering) → Delphes (detector analysis)

b-tag efficiency : 77% c mistag : 20.4% 1907.05120 light jet mistag : 0.9%

HL-LHC detector card

CERN Yellow Report https://e-publishing.cern.ch/index.php/CYRM/article/view/952

- A. 2 b-jets ($N_b = 2$) with $p_T > 30$ GeV and $|\eta| < 4.0$.
- B. 0 leptons ($N_{\ell} = 2$) with $p_T > 20$ GeV and $|\eta| < 4.0$.
- C. At least 2 light-jets ($N_j \ge 2$) with $p_T > 30$ GeV and $|\eta| < 4.0$.
- D. with/without : Two forward light jets : $\eta_{i1} * \eta_{i2} < 0$, jets are p_T ordered.
- E. Generation level cuts : $E_T \ge 50$ GeV and $m_{ii} > 400$ GeV.

Signal process for $m_A = 300$, 400/500 GeV. Backgrounds: QCD 2b 2j 2ν and $t\bar{t}$ - hadronic (different tag-efficiencies)

Invariant mass of di-jet pair

Transverse momentum of di-jet pair

Total number of light jets

Scalar p_T sum of visible objects

 $\Delta\eta$ separation between hardest jets

Maximum $\Delta \eta$ separation between jets

 ΔR separation between b-jets

hep-ph/9906349, 1309.6318

500

600

-m_a = 300 GeV --tt-had

 $--m_{A} = 500 \text{ GeV} --\text{QCD}$

400

 $--m_{a} = 400 \text{ GeV} --\text{QCD}$

400

300

m_{T2} [GeV]

500

600

200

200

300

m_{T2} [GeV]

2011.08280 11

Missing energy

Backup Slides

Collider limit on IDM + PS model

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/ SUS-21-008/index.html

... From Kazuki

Summary of ATLAS-CONF-2021-006

2HDM+pseudoscalar Model:

Signal: $gg \to h(\to bb) + a(\to \chi\chi) [b\bar{b} + \not\!\!E_T]$

DM candidate: $m_{\chi} = 10$ GeV, $y_{a\chi\chi} = 1$. This m_{χ} ensures $Br(a \rightarrow \chi\chi)$ is significant for all m_a . $Sin\theta = 0.35$, $m_h = 125$ GeV, $m_A = m_H = m_{H^{\pm}} = [250 : 2000]$ GeV, $m_a = [100 : 600]$ GeV.

Backgrounds:

Dominant: $\mathbf{V}+\mathbf{jets}, t\bar{t}$.

Sub-dominant: VV+jets, single-t, $t\bar{t}h$, Vh, $t\bar{t}V$ (V=W/Z).

-Considering the resolved category, where the b-jets are well separated, the main cuts

are:

1. $\not\!\!\!E_T > 150 \text{ GeV}$

2. leptons are vetoed.

3. $\Delta \phi(j_{1/2/3}, \not\!\!\!E_T) > 20^\circ$.

4. $\not\!\!\!E_T < 500$ GeV.

- 5. At least two b-tagged jets.
- 6. $p_{T,h} > 100$ (300) GeV if $\not\!\!\!E_T < 350$ (> 350) GeV.
- 7. $m_T > 170/200$ GeV.
- 8. $50 < m_h < 280$ GeV (I dont understand this though).

Resolved	Merged						
Primary $E_{\rm T}^{\rm miss}$ trigger							
Data quality selections							
$E_{\rm T}^{\rm miss}$ > 150 GeV							
Lepton veto & extended τ -lepton veto							
$\Delta \phi(\text{jet}_{1,2,3}, E_{\text{T}}^{\text{miss}}) > 20^{\circ}$							
$E_{\rm T}^{\rm miss}$ < 500 GeV	$E_{\rm T}^{\rm miss}$ > 500 GeV						
At least 2 small-R jets	At least 1 large-R jet						
At least 2 b-tagged small-R jets	At least 2 <i>b</i> -tagged associated variable- <i>R</i> track jets						
$p_{\mathrm{T}h} > 100 \mathrm{GeV}$ if $E_{\mathrm{T}}^{\mathrm{miss}} < 350 \mathrm{GeV}$							
$p_{\mathrm{T}h} > 300 \mathrm{GeV}$ if $E_{\mathrm{T}}^{\mathrm{miss}} > 350 \mathrm{GeV}$							
$m_{\rm T}^{b,{\rm min}} > 170{\rm GeV}$	_						
$m_{\rm T}^{b,{\rm max}} > 200 {\rm GeV}$	_						
S > 12	—						
$N_{\text{small-}R \text{ jets}} \le 4 \text{ if } 2 b \text{-tag}$	_						
$N_{\text{small-}R \text{ jets}} \leq 5 \text{ if } \geq 3 b \text{-tag}$							
$50\mathrm{GeV} < m_h < 280\mathrm{GeV}$	$50 \mathrm{GeV} < m_h < 270 \mathrm{GeV}$						

Table 1: Summary of selections used to define the signal regions used in the analysis. The kinematic variables are defined in the text.

Signal : $pp \rightarrow aAjj, A \rightarrow ha, h \rightarrow b\bar{b}$ [Final state : 2 b-jets + 2 forward light-jets + $\not\!\!\!E_T$]

		0					
$m_A = 400 { m GeV}, \sigma = 1$							
$p_{T,j/b/\tau_h} > 30 \text{ GeV}, p_{T,\ell} > 20 \text{ GeV}, \eta_{j/b/\tau_h/\ell} < 4.0, \ell = e/\mu$							
Cuts applied	Signal Efficiency	Yield at 3 ab^{-1}					
$N_b=2, \; N_\ell=0$.328	1673					
$N_j \ge 2$.323	1647					
$150~{\rm GeV} < \not\!\!\! E_T < 500~{\rm GeV}$.0204	104					
$p_{T,h} > 100 \ (> 300) \text{ GeV if } E_T < 350 \ (> 350) \text{ GeV}$.019	97					
$m_T^{b,min} > 170 \text{ GeV} \text{ and } m_T^{b,max} > 200 \text{ GeV}$.003	15					
$S = \frac{\not E_T}{\sqrt{HT}} > 12$.000013	0.066					
$\Delta \phi(j/b, p_T) > 20^{\circ}$.00001	0.051					

Table 1: The signal efficiency and yield at HL-LHC after the cuts.

Taggging efficiencies from CERN-EP-2019-132, 1907.05120

Figure 2: The (a) light-flavour jet and (b) *c*-jet rejections versus the *b*-jet tagging efficiency for the IP3D, SV1, JETFITTER, MV2 and DL1 *b*-tagging algorithms evaluated on the baseline $t\bar{t}$ events.

Table 4: Selection and *c*-jet, τ -jet and light-flavour jet rejections corresponding to the different *b*-jet tagging efficiency single-cut operating points for the MV2 and the DL1 *b*-tagging algorithms, evaluated on the baseline $t\bar{t}$ events.

6	MV2			DL1				
Cb	Selection	Rejection		Selection	Rejection			
	Sciection	<i>c</i> -jet	au-jet	Light-flavour jet	Sciection	<i>c</i> -jet	au-jet	Light-flavour jet
60%	> 0.94	23	140	1200	> 2.74	27	220	1300
70%	> 0.83	8.9	36	300	> 2.02	9.4	43	390
77%	> 0.64	4.9	15	110	> 1.45	4.9	14	130
85%	> 0.11	2.7	6.1	25	> 0.46	2.6	3.9	29

MV2: b-tag=77%, c-mistag=1/4.9 = 20.4%, j-mistag=1/110 = 0.9%