Axial PET a new concept for brain and small animal imaging

Paolo Beltrame PH/DT Marie Curie for Particle Detector

Outlook

- The concept
 - ♦ Standard PET and the novel Axial-PET concept
- The demonstrator
 - \diamond Components and construction
 - ➢ Digression
 - ♦ Silicon Photo Multipliers
 - Going back to Ax-PET
- Characterization and performances
- Conclusions

PET: Positron Emission Tomography

THE CONCEPT

From standard (radial) PET to Axial PET

 Conventional PET
 New geometry AXIAL PET

 (radial arrangement of scintillator detectors)
 AXIAL PET

Compromise btw. spatial resolution (*R*) and sensitivity (*S*)

- \diamond Long crystals (big *L*) => high *S*, poor *R*
 - parallax error : *mp* = L sin (
 - no depth of interaction (DOI) information
- ♦ Small crystals (small *L*) => high *R*, poor S
 detection efficiency: ∑ = 1 e^{-L/L}

♦ Long crystals (L >> L_radial)
 ♦ Axially arranged around the body
 ♦ Different layers

The concept: transaxial coordinate (x,y)

3D localization of the photon interaction point without compromising between spatial resolution and sensitivity

1. TRANSAXIAL COORDINATE (x,y)

◇Transaxial coordinate from position of the hit crystal
◇Transaxial resolution d/√12 FWHM
◇To increase spatial resolution
=> Reduce crystals size (d)
◇To increase sensitivity
=> Add additional layers

The concept: axial coordinate (z)

3D localization of the photon interaction point without compromising between spatial resolution and sensitivity

2. AXIAL COORDINATE (z)

THE DEMONSTRATOR

- Two identical modules. Each module:
 - 48 LYSO bars (6 layers x 8 crystals) 2 modules -> 408 channels
 - 156 WLS strips (6 layers x 26 strips)

Crystals and WLS strips

The Ax-PET components: LYSO crystals

Crystal material: LYSO Manufacturer: Saint-Gobain Dimensions: 3 × 3 × 100 mm³

- ♦ High light yield (32000 © / MeV)
- \diamond 3 x 3 x 100 mm³

WLS material: Polyvinyltoluene + dopant Manufacturer: ELJEN Technology Dimensions: 0.9 × 3 × 40 mm³

WAVE LENGTH SHIFTING STRIPS (WLS):

- \diamond ELJEN EJ-280-10x
- \diamond Shift light from blue to green
- ♦ Density: 1.023 g/cm³
- \diamond Absorption length for blue light: 0.4 mm
 - (10 x standard concentration)
- \diamond Index of reflection: 1.58
- ♦ Decay time: 8.5 ns
- ♦ 0.9 x 3 x 40 mm³

MPPC Manufacturer: Hamamatsu

Operational voltage: ~70 V

MPPC LYSO: S10362-33-50-C

active area: $3 \times 3 \text{ mm}^2$ 3600 pixels of 50 x 50 μ m² Gain: 5.7 x 10⁵ Ceramic package 5.9 x 6.6 mm²

MPPC WLS: MPPC-OCTAGON-SMD custom made active area: $3.22 \times 1.19 \text{ mm}^2$ $1200 \text{ pixels of } 70 \times 70 \text{ } \mu\text{m}^2$ Gain: 4×10^5

Octagonal plastic package

PHOTON DETECTION

- Silicon Photo Multiplier: SiPM
- Geiger mode Avalanche Photodiode: G-APD
- Multi Pixel Photon Counter

from EDIT lectures

PIN photodiode

- Solid state detector (silicon)
- Internal photoeffect
 - p-i-n photodiode

intrinsic piece of semiconductor sandwiched between two heavily (oppositely) doped regions.

- Two charge sheets (on the n+ and p+) field which tend to separate charges produced in the depleted region.
- Charges detected as a current

Photodiode

- 0 < V_{bias} < V_{APD} (few volts)
- G = 1
- Operate at high light level (few hundreds of photons)

APD

- $V_{APD} < V_{bias} < V_{BD}$
- G = M (50 500)
- Linear-mode operation

G-APD

- $V_{bias} > V_{BD}$ ($V_{bias} V_{BD} \sim few volts$)
- G => ∞
- Geiger-mode operation
- Can operate at single photon level

Geiger mode Avalanche Photo Diode

- Singe photon detector operating in Geiger mode
- Photon counting

Binary device

• If one or more simultaneous photons fire the GM-APD, the output is anytime a standard signal: $Q \sim C(V_{bias} - V_{BD})$

• GM-APD does not give information on the light intensity

Silicon Photo Multipliers

- Matrix of n pixels connected in parallel (e.g. few hundreds /mm²) on a common Si substrate
- Each pixels = G-APD in series with R_{quench}

Quasi-analog device:

- If simultaneously photons fires different pixels, the output is the sum of the standard signals: Q~ΣQ_i
- $= \frac{1}{2} = \frac$
- SiPM gives information on light intensity

Advantages

- + high gain (10^5-10^6) with low voltage (<100V)
- + low power consumption (<50µW/mm²)
- + fast (timing resolution ~ 50 ps RMS for single photons)
- + insensitive to magnetic field (tested up to 7 T)
- + high photon detection efficiency (30-40% blue-green)

Possible drawbacks

- high dark count rate (DCR) at room temperature
 - 100kHz 1MHz/mm²
 - thermal carriers, cross-talk, after-pulses
- temperature dependence
 - V_{BD} , G, R_q , DCR

Going back to Ax-PET

Ax-PET module

February 25, 201

CHARACTERIZATION AND PERFORMANCES

Ax-PET demonstrator characterization

²²Na source (ø = 250µm; A = ~900 kBq)

 ♦ Module in coincidence with a tagging scintillator
 ♦ Use of different tagging crystals

P. Beltrame – PH/DT Marie Curie Fellov

The energy calibration

Deviation from linearity due to MPPC saturation (3600 pixels) ~ 5% effect

Parameterization: logarithmic function $En(ADC) = E_0 - a \ln c \ln c - \frac{ADC}{b} c c$

E < R_FWHM > ~ 11.6% @511 keV (averaged on all crystals)

The axial resolution

 \Rightarrow Photoelectric events only (1 hit crystal per module) \Leftrightarrow Draw "LOR" (pure geometrical)

Intersection

(R_FWHM) z ~ 1.5 mm

- \diamond intrinsic resolution
- \diamond positron range
- \diamond non collinearity
- \Rightarrow (source dimensions; $\emptyset = 250 \mu m$)

$$R_{\rm intr} = \sqrt{R_{meas}^2 - R_{\rho}^2 - R_{180}^2}$$

Image reconstruction: capilaries

Novelty of AX-PET

1. As calorimeter

"unconventional" use of WLS to collect escaping scintillation light / bare scintillators

2. New PET with axial geometry

- \diamond Sensitivity and Resolution decoupled
- \diamond DOI (Depth Of Interaction) direct measurement => parallax free system
- \diamond Resolution / Sensitivity tunable with granularity / Nr. layers
- Possibility to identify ICS (Inter Crystal Scattering) => Tag & discard ICS evts. (Resolution fully maintained) OR Tag & reconstruct ICS evts. (Sensitivity increased)

Status and Performance of AX-PET

1. Demonstrator (2 modules) built and characterized (individually / in coincidence) with sources

2. PERFORMANCES

- ♦ Energy resolution: R_FWHM 11.6 % (@511 keV)
- ♦ Intrinsic spatial resolution : R_FWHM ~ 1.35 mm
- ♦ First reconstructed images

Tanks for your attention

BACK UP SLIDES

Readout and trigger

Custom designed DAQ system - Individual analogue readout of MPPC output

♦ VATA GP5 chip: 128-ch charge sensitive integrating [AXPET : x4 VATA GP5 chips]

EXTERNAL TRIGGER (NIM logic) : Coincidence of the two 511 keV annihilation photons (one per module), with high energy discrimination threshold on the module energy sum

Simulation of the camera

AXPET (2 modules in coincidence) fully modeled by **dedicated Monte Carlo simulations**

GATE simulation package

(GEANT4 application for tomographic emission, including time-dependent phenomena e.g. detector movement)

AXPET challenges:

♦ non conventional PET design
♦ WLS parameterization in the digitizer
♦ Sorter for the coincidences

Goal of the project : Build and fully characterize a demonstrator for the AX-PET concept

Not a full scanner, but **2 modules** => to mimic the full scanner: **2 modules in** coincidence + rotating source Dedicated simulations,

2 modules + validation of the simulation
 Full scanner simulation for the final performances

a) small FOV coverage:

- 2 modules fixed, back to back position (180°)
- rotating source in the center of FOV

b) extended FOV coverage:

- allow coincidences btw 2 modules not at 180°
- 1st module fixed
- 2^{nd} module rotating (θ =180°+/- 60°)
- rotating source

