

Radiation Damage on MOS-Structure

Q. Wei, L. Andricek, H-G. Moser, R. H. Richter Max-Planck-Institute for Physics Semiconductor Laboratory RD50, Vilnius, 2007

Qingyu Wei, MPI für Physik, HLL

Outline

Motivation

٠

٠

٠

- Radiation damage & effects on MOS-structure
- Experimental Conditions and Results
- Conclusion

Radiation Damage II

Radiation damage in MOS-Structure:

- Surface damage due to Ionizing Energy Loss (IEL)
 - \land accumulation of charge in the oxide (SiO₂) and Si/SiO₂ interface
 - A Oxide charge → shifts of flat band voltage, (depleted → enhancement)
 A annealing at RT
 - ▲ Interface traps → leakage current, degradation of transconduction,... no annealing below 400 $^{\circ}C$

S/N Ratio deteriorated!

 \bigstar

• Reservoir: hole traps are not exhausted, unless a larger bias voltage is applied on the gate!

• Saturation: equilibrium between trapped filling and recombination

-Generated holes are pushed away!

-Recombination of trapped holes with electrons

- Recombination of tunneled electrons from silicon into interface with trapped holes!

Experiment Conditions and Methods

Irradiation (X-Ray):

 •Co⁶⁰ (1.17 MeV and 1.33 MeV)
 •GSF – National Research Center for Environment and Health, Munich
 •CaliFa (17.44 KeV)
 •Max-Planck-Institute Semiconductor Labor, Munich
 •Roentgen facility (20 KeV)
 •Research center, Karlsruhe

 •Dose: irradiation up to 1 Mrad with different dose rate (1rad=0.01J/kg)
 •Process: No annealing during irradiation ~ irradiation duration from 1 day to 1 week
 •Radiation levels at the ILC VTX: D_{ionization} ≈ 100 .. 200 Krad

 Φ ≈ 10¹⁰ .. 10¹¹ neg(1MeV)/cm²

• Comparison of different semiconductor devices

	DEPFET	MOS-C			
N _{ox} (method)	∆ V _t (IV-Measurement)	∆V _{FB} (CV-Measurement)			
N _{it} (method)	Subthreshold slope (Subthreshold technique)	Stretch-out (High-low frequency based on the CV)			
Other parameters	g _m (IV-Measurement)				

Results for MOSDEPFET

Discontinuity of current density J_n-J₀ in short time lead to charge carriers accumulation & trapping in N/O strained interface field dependence of current density & thickness of the dielectrics plays an important role! charge in Si/SiO interface donot affect the field distribution in dielectrics!

Annealing for surface damage

Oxide charge decrease with time:

(Tunnel annealing @ RT)

Conclusion

Radiation experiment

- Study of saturation effect for surface damage (equilibrium between generation and recombination)
- Study of bias dependence("+","0","-")
- Study of different semiconductor devices, which are with different oxide thickness to see the kind of relation between V_{fb} and oxide thickness (d_{ox}^n)
- **Radiation hardness** $\Gamma = N_{ox} / (\phi_h \times t) \le 5\%$ (~ 1*Mrad*)
- Reduced oxide thickness improves radiation hardness
- Additional Nitride layer serve as a good protection against ionizing radiation (electron trapping!)
- Surface damage can be reduced through annealing process with time

Backup slides

Mathematics Expression I

Chip thickness (nm)		Electrically	Pre-Rad	Post-Rad	Post-Rad	Post-Rad	Post-Rad	Post-Rad
Equivalent Oxide thickness	Oxide/Nitride thickness	measured equivalent oxide thickness (CV)	V _{FB} (V)	V _{FB} (V) ~1Mrad Vg=-10V	V _{FB} (V) ~1Mrad Vg=-5V	V _{FB} (V) ~1Mrad Vg=0V	V _{FB} (V) ~1Mrad Vg=+5V	V _{FB} (V) ~1Mrad Vg=+10V
86	86	76±2	-0,6	6	5,3	4,1	18,6	19
91	86/10	85 ±2	-1,4	4,4	3,3	2,3	16,4	22,7
100	100	95 ±2	-0,7	7,1	6	5,5	16,6	29,4
105	100/10	103±1.5	-1.4	5	3,4	2,6	21,3	31,5

Mathematics Expression II

$$\frac{dQ_{ox}}{dD} = \frac{dQ_{h,ox}}{dD} = F_h f_T = \left\{ \gamma_{h,ox}(E_{ox}) d_{ox} \right\} \left\{ \sigma_{h,ox}(E_{ox}) \left(\overline{Q_{h,ox}} - Q_{h,ox} \right) \right\} = \beta_{h,ox} \left(\overline{Q_{h,ox}} - Q_{h,ox} \right)$$

$$\frac{dQ_{ni}}{dD} = \frac{dQ_{h,ni}}{dD} - \frac{dQ_{e,ni}}{dD} = \beta_{h,ni} \left(\overline{Q_{h,ni}} - Q_{h,ni} \right) - \beta_{e,ox} \left(\overline{Q_{e,ni}} - Q_{e,ni} \right)$$

$$Q_{ox} = \overline{Q_{h,ox}} \left(1 - \exp\left(-\beta_{h,ox}D\right) \right) \qquad Q_{ni} = \overline{Q_{h,ni}} \left(1 - \exp\left(-\beta_{h,ni}D\right) \right) - \overline{Q_{e,ni}} \left(1 - \exp\left(-\beta_{e,ox}D\right) \right) \\ \Delta V_{FB} = -\left(\frac{Q_{ox}}{C_{eq,ox}} + \frac{Q_{ni}}{C_{ni}} \right) = -\frac{1}{C_{ni}} \left(\left[-\overline{Q_{e,ni}} + \overline{Q_{h,ni}} + \overline{Q_{h,ox}}\eta \right] + \left[\overline{Q_{h,ox}}e^{-\beta_{h,ox}D}\eta + \overline{Q_{h,ni}}e^{-\beta_{h,ni}D} - \overline{Q_{e,ni}}e^{-\beta_{e,ni}D} \right] \right)$$

$$\eta = 1 + \frac{\varepsilon_{ni}d_{ox}}{\varepsilon_{ox}d_{ni}} \qquad d_{eq,ox} = d_{ni}\frac{\varepsilon_{ox}}{\varepsilon_{ni}} + d_{ox} \qquad V_g = E_{ox}d_{eq,ox} \qquad C_{eq,ox} = \frac{\varepsilon_{ox}}{d_{eq,ox}}A \qquad \beta_{h,ox}\left(E_{ox}\right) = \gamma_{h,ox}\left(E_{ox}\right)\sigma_{h,ox}\left(E_{ox}\right)$$

Mathematics Expression III

D: dose Assumption (positive gate bias) d_{eaox} : equivalent oxide thickness Recombination at interface (Si/SiO or N/O) should be neglected d_{ox} : oxide thickness Electron or hole trapps are distributed approximately homogen at interface d_{ni} : nitride thickness There are no trapped charge at interface (pre-Rad) V_{a} : gate voltage $\mathcal{E}_{ni/ox}$: permittivity of nitride/oxide A: gate area $C_{eq,ax}$: equivalent oxide capacitan ce $Q_{ni/ox}$: trapped charge in nitride / oxide $E_{ox/ni}$: electric field in oxide/nitride $F_{h/e}$: fluence per unit dose for radiation – generated hole or electron f_{τ} : fraction of trapped charge for radiation – generated hole or electron ΔV_{FB} : flat band voltage shift $\gamma_{h \, ox/e \, ox/h \, ni}$: field – dependent charge generation coefficient for hole or electron in oxide/nitride $\sigma_{h.ox/e,ni/h.ni}$: capture cross section of hole/electron in oxide/nitride $N_{h.ox/e.ox/h.ni}$: trapp density of hole/electron in oxide/nitride (approximately homogen distributed in interface Si/SiO or O/N) $\beta_{h ox/e ox/h ni}$: field – dependent factor

Annealing for MOS-C (PXD4)

Halbleiterlabor

Radiation Damage

Two types of radiation damage in MOS-Structure:

- Surface damage due to Ionizing Energy Loss (IEL)
 - accumulation of charge in the oxide (SiO₂) and Si/SiO₂ interface
 - A Oxide charge \rightarrow shifts of flat band voltage, (depleted \rightarrow enhancement)
 - Interface traps → leakage current, degradation of transconduction,...
- Bulk damage due to Non Ionizing Energy Loss (NIEL)
- displacement damage, built up of crystal defects
 - ▲ Increase of leakage current \rightarrow increase of shot noise,...
 - ▲ Change of effective doping concentration \rightarrow higher depletion voltage,...
 - ▲ Increase of charge carrier trapping \rightarrow signal loss!

S/N Ratio deteriorated!

