3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x10¹⁶ n_{eq}/cm²

> Zheng Li¹ and Tanja Palviainen² ¹Brookhaven National Laboratory ²Lappeenranta University of Technology

Work based on the period 2/15/-4/15/07 at Brookhaven National Laboratory

*This research was supported by the U.S. Department of Energy: Contract No. DE-AC02-98CH10886

OUTLINE

- Simulated detector structure
- Simulation tools
- Simulated full depletion voltage up to 1x10¹⁶ n_{eq}/cm²
- 3D profiles of hole concentration and Efield up to 1x10¹⁶ n_{eq}/cm²
- Various other geometries
- Summary

Detector Structure

- BNL's one-sided, dual column 3D detector
- There are two n-type (blue) and two p-type (red) doped columns on p-type substrate
- Same type of doped columns are placed to the opposite corners

Simulation

- Silvaco DEVEDIT3D, DEVICE3D (ATLAS)
- The detector structure was simulated with different fluencies (N_{eff})
- Oxide charge of 4x10¹¹ /cm² is implemented
- 3D hole and E-field profiles are simulated

Simulated V_{fd} values in dual column 3D detectors with different fluencies

	2d pad detector	Dual columns 3d detectors	TomyPlot V2.8.40.K			
fluency	Calculated V _{fd} (d=50um)	Simulated V _{fd}	ATLAS OVERLAV Data from multiple files			
5.00E+14	19	30	- X			
1.00E+15	38	60	_ X X two_columns_3d_2E15_4E13.log X X two_columns_3d_3E15_6E13.log X X two_columns_3d_3E15_6E13.log			
2.00E+15	76	110	4e-10 X—X two_columns_3d_5E15_1E14.log X—X two_columns_3d_6E15_12E14.log			
3.00E+15	114	160	two_columns_3d_/EIS_1_4E4Llog two_columns_3d_9EIS_1_6E14Llog two_columns_3d_9EIS_1_BE14Llog			
4.00E+15	152	210	6e 10 - X two_columns_3d_1E16_2E14Jog			
5.00E+15	190	250	8+10			
6.00E+15	228	300				
7.00E+15	266	350	-1e 09			
8.00E+15	304	400				
9.00E+15	342	450	-500 -400 -300 -200 -100 0 Anode Voltage (V)			
1.00E+16	380	500	Lading file /whee/hauge/3d_reliation/hauge/3			

V_{fd} 3D is 1.4 times higher: Small electrodes Current vs. V (no lifetime degradation entered)

$5 \times 10^{14} n_{eq}/cm^2$

$4x10^{15} \ n_{eq}/cm^2$

$1 \times 10^{16} n_{eq}/cm^2$

Hole concentration

Hole

concentration

The volume under the columns can be depleted with modest E-field: not dead area, and providing a sensitivity under the columns

Hole concentration

Hole concentration

E-field

E-field

E-field

E-field

E-field

E-field

E-field

E-field

E-field

E-field

E-field

E-field

E-field

Varieties in detector geometry

 The pad size (L_c) and the distance between pads (L_p) were varied

 $L_c=3um, L_p=10um$

 $L_c=3um, L_p=20um$

 $L_c=5um, L_p=30um$

 $L_c=5um, L_p=40um$

 $L_c=5um, L_p=50um$

Simulated V_{fd} values for different geometries in detector

Simulated V_{fd} for dual columns 3D detectors

Fluency	L _c =3um L _p =10um	L _c =3um L _p =20um	L _c =5um L _p =30um	L _c =5um L _p =40um	L _c =5um L _p =50um
1.00E+16	10	80	200	460	>500

With lifetime degradation

BNL-2C-3D, $1x10^{16} n_{eq}/cm^2$, 150 V

ATLAS Data from two_columns_3d_1E16_Lc5um_Lp30um-150V.str

BNL-2C-3D, 1x10¹⁶ n_{eq}/cm², 150 V

ATLAS Data from two_columns_3d_1E16_Lc5um_Lp30um-150V.str

ATLAS Data from two_columns_3d_1E16_Lc5um_Lp30um-150V.str

Front side p⁺ n⁺ 40 362 28 240 16 12 8 4 0 Y Electric Field (V/cm) r 1e+05 +4 **P**⁺ - 93333 86667 - 80000 73333 29 66667 End of n⁺ columns 60000 -1.2e+02 53333 1.5e+02 - 46667 1.8e+02 - 40000 2.1e+02 2.4e+02 33333 2:7e+02 3e+02 Backside 26667 - 20000 - 13333 - 6666.7 0

ATLAS Data from two_columns_3d_1E16_Lc5um_Lp30um-150V.str

ATLAS Data from two_columns_3d_1E16_Lc5um_Lp30um-150V.str

Characterization of new BNL 3d Si test detectors

S.Martí i García¹, M.Miñano¹, V.Lacuesta¹ M.Lozano², G.Pellegrini²

¹Instituto de Física Corpuscular, Aptdo. de correos 22085 E-46071, Paterna (Valencia), Spain ²Centro Nacional de Microelectrónica, Campus signa Autónoma de Barcelona, 08193, rra (Darcelora), Spain

Current measurements

Setup in Valencia

Laser light is generated by exciting a laser source with an external pulsed signal

(2 V and 1 MHz rate)

Laser properties:

- □ λ =1060 nm (Near Infrared)
- Laser energy of photons=1.170 eV

Charge collection measurements

□ Biasing all Y p⁺ strips negative

 $\hfill\square$ The signal corresponds to the X n^+ holes

□ Fully depleted at about 4 volts

SUMMARY

- Simulated V_{fd} for a dual-column 3D detector is about 1.4 time higher than that of a 2D pad detector with $d = L_p$
- Highest E-field is near the n⁺ column, and high field mainly distributes between the n⁺ and p⁺ columns.
- Low E-field is between the two p⁺ columns, and the lowest E-field is in the center of the unit cell
- In order to fully deplete a dual-column 3D detector at $1 \times 10^{16} n_{eq}/cm^2$ with a reasonable bias (<200 V), the n⁺-p⁺ column spacing L_p should be reduced to 40 µm (<50 µm)
- The volume under the column can be depleted with modest biases: not a dead area, and providing a sensitivity under the columns