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Double-sided 3D detectors

• Proposed by CNM, also 
being produced by IRST

• Columns etched from 
opposite sides of the 
substrate

• Metal layer on back 
surface connects bias 
columns

– Backside biasing

• Medipix configuration 
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thickness

Oxide layer

n+ column
250µm length

10µm diameter

p-stop
Inner radius 10µm
Outer radius 15µm

Dose 10
13

cm
-2

55µm pitch

p- substrate
300µm thick,

doping 7*10
11

cm
-3

Separate contact to
each n+ column

On back side:
Oxide layer covered with metal

All p+ columns connected together

p+ column
250µm length

10µm diameter
p+ column



Double-sided 3D: Depletion behaviour
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Double-sided 3D: Electric field
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Double-sided 3D: Electric field at front
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Double-sided 3D detectors: Collection time
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University of Perugia trap models

0.92.5*10-152.5*10-14CiOiEc+0.36Donor

0.95.0*10-145.0*10-15VVVEc-0.46Acceptor

1.6132.0*10-142.0*10-15VVEc-0.42Acceptor

η

(cm-1)σh (cm2)σe (cm2)Trap
Energy 
(eV)Type

Perugia P-type model (FZ)

IEEE Trans. Nucl. Sci., vol. 53, pp. 2971–2976, 2006

“Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ 
Silicon Detectors”, M. Petasecca, F. Moscatelli, D. Passeri, and G. U. Pignatel
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• 2 Acceptor levels: Close to midgap

– Leakage current, negative charge (Neff), trapping of free electrons

• Donor level: Further from midgap

– Trapping of free holes



• Experimental trapping times for p-type silicon (V. Cindro et al., IEEE NSS, 
Nov 2006) up to 1015neq/cm2

– βe= 4.0*10-7cm2s-1 βh= 4.4*10-7cm2s-1

• Calculated values from p-type trap model

– βe= 1.6*10-7cm2s-1 βh= 3.5*10-8cm2s-1

University of Perugia trap models
• Aspects of model:

– Leakage current – reasonably close to α=4.0*10-17A/cm

– Depletion voltage – matched to experimental results (M. Lozano et al., 
IEEE Trans. Nucl. Sci., vol. 52, pp. 1468–1473, 2005) 

– Carrier trapping –

• Model reproduces CCE tests of 300µm pad detectors

• But trapping times don’t match experimental results
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Altering the trap models

• Priorities: Trapping time and depletion behaviour

– Leakage current should just be “sensible”: α = 2-10 *10-17A/cm

• Chose to alter cross-sections, while keeping σh/σe constant
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Modified P-type model

0.93.23*10-143.23*10-13CiOiEc+0.36Donor

0.95.0*10-145.0*10-15VVVEc-0.46Acceptor

1.6139.5*10-149.5*10-15VVEc-0.42Acceptor
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Modified P-type model and experimental data

0.93.23*10-143.23*10-13CiOiEc+0.36Donor

0.95.0*10-145.0*10-15VVVEc-0.46Acceptor

1.6139.5*10-149.5*10-15VVEc-0.42Acceptor

η

(cm-1)σh (cm2)σe (cm2)Trap
Energy 
(eV)Type

P-type trap models: Depletion voltages
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“Comparison of Radiation Hardness of P-in-N, N-in-N, and N-in-P Silicon 
Pad Detectors”, M. Lozano et al., IEEE Trans. Nucl. Sci., vol. 52, pp. 1468–

1473, 2005

P-type trap model: Leakage Current
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Perugia N-type model

• Works similarly to the p-type model

• Donor removal is modelled by altering the substrate doping directly

• Experimental trapping times for n-type silicon (G. Kramberger et al., NIMA, 
vol. 481, pp297-305, 2002)

– βe= 4.0*10-7cm2s-1 βh= 5.3*10-7cm2s-1

• Calculated values from n-type trap model

– βe= 5.3*10-7cm2s-1 βh= 4.5*10-8cm2s-1

1.12.5*10-152.0*10-18CiOiEc+0.36Donor

0.083.5*10-145.0*10-15VVOEc-0.50Acceptor

131.2*10-142.0*10-15VVEc-0.42Acceptor

η
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Energy 
(eV)Type

Perugia N-type model (FZ) Donor removal

)exp(0 Φ−= DDD cNN

constKcN CDD ==*0

K
C
=(2.2±0.2)*10-2cm-1



N-type trap model: Leakage Current
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N-type trap models: Depletion voltages
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“Characterization of n and p-type diodes processed on Fz 
and MCz silicon after irradiation with 24 GeV/c and 26 
MeV protons and with reactor neutrons”, Donato Creanza 
et al., 6th RD50 Helsinki June 2-4 2005

1.13.1*10-152.5*10-17CiOiEc+0.36Donor

0.083.5*10-145.0*10-15VVOEc-0.5Acceptor

130.9*10-141.5*10-15VVEc-0.42Acceptor
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Experimentally,
α=3.99*10-17A/cm after 80 mins 
anneal at 60˚C (M. Moll thesis)



Bug in ISE-TCAD version 7

• Currently using Dessis, in ISE-TCAD v7 (2001)

• Non time-dependent simulations with trapping 

are OK

• Error occurs in transient simulations with traps

– Carrier behaviour in depletion region is OK

– Displacement current is miscalculated

– This affects currents at the electrodes

• This bug is not present in the latest release of Synopsis TCAD (2007)

– Synopsis bought ISE TCAD, and renamed Dessis as “Sentaurus 
Device”

– Don’t know which specific release fixed the problem

0.... =∇+∇+∇=∇ pndisptot JJJJCorrect behaviour:

Error: 73.1(~)*)(.. ,,, TraphTrapetoterrordisp RRqJJ −=∇=∇



Test of charge trapping in Synopsis TCAD

• Simulated a simple diode with carriers generated at its midpoint

No traps

“Double step”
seen because 
electrons are 
collected 
before holes



Test of charge trapping in Synopsis TCAD

• Simulated a simple diode with carriers generated at its midpoint

• Acceptor and donor traps further from the midgap

– Produces charge trapping but little change in Neff

– Trap levels should give τe≈ τh ≈ 1ns

?!

ISE TCAD traps



Test of charge trapping in Synopsis TCAD

• Simulated a simple diode with carriers generated at its midpoint

• Acceptor and donor traps further from the midgap

– Produces charge trapping but little change in Neff

– Trap levels should give τe≈ τh ≈ 1ns

With traps, 
signal decays 
as exp (-t/1ns) 
as expected

Synopsis traps

����
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Full 3D – Depletion voltage (p-type)
• Depletion voltage is low, but strongly dependent on pitch

• Double sided 3D shows the same lateral depletion voltage as full 3D

Depletion voltages and radiation damage
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Double-sided 3D – front surface
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Once again, double-sided devices show different behaviour at front and back surfaces
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Further work

• Simulate charge collection!

• Consider effects of different available pixel layouts

– CCE, depletion voltage, insensitive area, capacitance
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Conclusions

• Double-sided 3D detectors:

– Behaviour mostly similar to standard 3D

– Depletion to back surface requires a higher bias

– Front and back surfaces show slower charge collection

• Radiation damage model

– Trap behaviour is directly simulated in ISE-TCAD

– Trap models based on Perugia models, altered to match experimental 
trapping times

• Preliminary tests of damage model with 3D

– Relatively low depletion voltages, but electric field pattern is altered

– Double-sided 3D shows undepleted region at back surface at high 
fluences



Thank you for listening



Additional slides



3D detectors

• N+ and p+ columns pass through 
substrate

• Fast charge collection

• Low depletion voltage

• Low charge sharing

• Additional processing (DRIE for 
hole etching)
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Breakdown in double-sided 3D
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Breakdown in double-sided 3D
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Example of ISE TCAD bug
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In simulation, charge 
deposited at the front

Current distribution after 0.06ns
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Current distribution after 1ns
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Example of ISE TCAD bug





Depletion voltages and radiation damage
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Full 3D – Depletion voltage (p-type)
• Depletion voltage is low, but strongly dependent on pitch

• Double sided 3D shows the same lateral depletion voltage as full 3D
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Weighting fields and electrode layouts

X

Y

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

10

20

30

40

50

Abs(ElectricField)
30000
25000
20000
15000
10000
5000
0

Square layout, symmetrical layout of p+ and n+

Max field: 26500 V/cm

Symmetrical layout of n+ and p+

Weighting potential is the same for 
electrons and holes

X

Y

0 20 40 60

0

10

20

30

40

50

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.9

X

Y

0 10 20 30 40 50 60 70

0

10

20

30

40

50

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Square layout, symmetrical layout of n+ and p+

Weighting
potential

Electric field, 100V bias Weighting potential



X

Y

0 20 40 60

0

10

20

30

40

50

X

Y

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

10

20

30

40

50

Abs(ElectricField)
30000
25000
20000
15000
10000
5000
0

Square layout, 3 n+ bias columns per p+ readout column

Max field: 44700 V/cm

Weighting fields and electrode layouts

3 bias columns per readout column

Weighing potential favours electron 
collection

0.
90.

70.
5

0.3

0.
2

0.
1

X

Y

0 10 20 30 40 50 60 70

0

10

20

30

40

50

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Square layout, 3 p+ bias columns per n+ readout column

Weighting
Potential

Electric field, 100V bias Weighting potential



X

Y

0 20 40 60

0

10

20

30

40

50

• Choice of electrode layout:

– In general, two main layouts possible

– Second option doubles number of columns

– However, increasing no. of p+ columns means larger electron 

signal
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Future work – Design choices with 3D



Future work – Design choices with 3D

• ATLAS pixel (400µµµµm * 50µµµµm) allows a variety of layouts

– No of n+ electrodes per pixel could vary from ~3-8

– Have to consider Vdep, speed, total column area, capacitance

– FP420 / ATLAS run at Stanford already has different layouts

• CMS (100 µµµµm * 150µµµµm) 

133µm

50µm

3

8

50µm


