10<sup>th</sup> RD50 Workshop on Radiation hard semiconductor devices for very high luminosity colliders, Vilnius, Lithuania, 4-6 June 2007

Characterization of 150µm thick epitaxial silicon pad detectors from different producers after 24 GeV/c proton irradiation

Herbert Hoedlmoser<sup>(1)</sup>, <u>Michael Moll</u><sup>(1)</sup>, Jaako Haerkoenen<sup>(2)</sup>, Katharina Kaska<sup>(1)</sup>, Matthias Kronberger<sup>(1)</sup>, Julia Trummer<sup>(1)</sup>, Pierre Rodeghiero<sup>(3)</sup>

<sup>(1)</sup> CERN- PH-DT2 - Geneva – Switzerland
<sup>(2)</sup> Helsinki Institute of Physics – Helsinki - Finland
<sup>(3)</sup> Université Catholique de Louvain – Louvain - Belgium

**Outline:** • Material, Detectors, Irradiation and Measurements

- Detector Characterization (IV, CV, CCE, TCT)
- Comparison to previous work
- Preliminary conclusions, open questions and further work

# The epitaxial silicon



- Produced by ITME (Institute of Electronic Materials Technology, Warzawa, Poland)
  - 100 mm wafer
- n-type silicon
  - Epi-layer: 150μm, <111>, P-doped, ~500 Ωcm
  - Substrate: 525µm, <111>, Sb-doped, 0.015 Ωcm
- p-type silicon
  - Epi-layer: 150μm, <111>, P-doped, ~1000 Ωcm
  - Substrate: 525μm, <111>, B-doped, 0.015 Ωcm





## **The detectors**



### • Detectors produced from epi-wafers of same batch by:

- CNM (Centro National de Microelectronics, Barcelona, Spain)
- ITC-IRST (Microsystems Division, Povo, Trento, Italy)
- HIP (Helsinki Institute of Physics, Helsinki, Finland)

| producer                                                              | series name      | processing     | type   | size                               |  |
|-----------------------------------------------------------------------|------------------|----------------|--------|------------------------------------|--|
| CNM                                                                   | CNM-22           | pad detector   | p-type | $5 \ge 5 \text{ mm}^2$             |  |
| CNM                                                                   | CNM-11           | pad detector   | n-type | $5 \ge 5 \text{ mm}^2$             |  |
| CNM                                                                   | RD50-23          | strip detector | n-type | $5 \ge 5 \text{ mm}^2$             |  |
| CNM                                                                   | RD50 <b>-</b> 16 | strip detector | p-type | $5 \ge 5 \text{ mm}^2$             |  |
| ITC-IRST                                                              | ITC-W-11         | strip detector | n-type | $3.7~\mathrm{x}~3.7~\mathrm{mm}^2$ |  |
| HIP                                                                   | HIP-004-B        | pad detector   | n-type | $5 \pm 5 \text{ mm}^2$             |  |
|                                                                       |                  |                |        |                                    |  |
| <b>different masks used</b><br>(some containing also strip detectors) |                  |                |        |                                    |  |

# **RD50 Detectors from CNM Barcelona**



### • Detectors from pure pad mask (CERN-RADMON project)

- CNM-11 & CNM-22
- size 0.5 x 0.5 cm<sup>2</sup>
- 9 guard rings
- p-type: p-stop ring



### • Detectors from strip mask (RD50 project)

- RD50-16 & RD50-23
- size 0.5 x 0.5 cm<sup>2</sup>
- x guard rings
- x-type: x-spray



# **RD50 Detectors from IRST and HIP**



### • HIP detectors - pure pad mask (CERN-RADMON project)

- HIP-004
- size 0.5 x 0.5 cm<sup>2</sup>
- 17 guard rings
- only n-type used



### • Detectors from strip mask (SMART-RD50 project)

- ITC-W11
- size 0.37 x 0.37 cm<sup>2</sup>
- 11 guard rings
- only n-type used





## **Before irradiation**



| Detector series         | <b>Depletion Voltage (CV)</b>      |  |  |
|-------------------------|------------------------------------|--|--|
|                         | <b>V</b> <sub>dep</sub> <b>[V]</b> |  |  |
| HIP-004 (n-type)        | 147.4 <u>+</u> 3.6                 |  |  |
| ITC-W11 (n-type)        | <b>150.0 <u>+</u> 4.9</b>          |  |  |
| CNM-11 (n-type)         | 154.6 <u>+</u> 7.5                 |  |  |
| <b>RD50-23</b> (n-type) | 155.0 <u>+</u> 3.8                 |  |  |
|                         |                                    |  |  |
| CNM-22 (p-type)         | 213.7 <u>+</u> 12.7                |  |  |

# **RD50** Experimental procedure



- C/V and I/V measurements
  - measured at room temperature (and at -10°C); parallel mode 10KHz (and at 120Hz)

#### • CCE measurements

- NIKHEF setup (details in presentation of H.Hoedlmoser last RD50 Workshop)
- ${}^{90}$ Sr source; 2.5  $\mu$ s shaping time; noise 567e<sup>-</sup> + 4.26e<sup>-</sup>/pF
- measured mainly at -22±1°C

#### • TCT measurements

- RD39 setup at CERN used (details given in Jaakko's talk)
- 2 lasers used:
  - infrared laser simulation of mips
  - red laser front illumination only

#### • Irradiation

- 24 GeV/c protons at the CERN PS
- Annealing
  - 4min at 80°C

# **RD50** leakage current after irradiation





• CNM detectors: Increase of leakage current around 300V caused noise problems for CCE measurements







4 min 80°C









Michael Moll – 10<sup>th</sup> RD50 Workshop, June 2007 -10-

# **RD50 TCT** measurements (red laser)





- p-type epi silicon after 2.3x10<sup>14</sup> p/cm<sup>2</sup>
- data not corrected for trapping
- demonstrating that p-type has been inverted to n-type

### **CCE** measurements







## **CCE** measurements







## **TCT – Infrared laser**





• Sharp drop in CCE at low fluences observed also with infrared laser (RD39 TCT setup)



4 min 80°C

## Summary



24 GeV/c proton irradiated n- and p-type 150 μm thick epitaxial detectors manufactured by 3 different producers have been investigated:

- leakage current increase as expected (same for all detectors)
- increase of  $V_{dep}$  (donor generation) depending on processing different for different manufacturers
- net space charge remains positive for n-type epi (no type inversion)
- net space charge becomes positive for p-type epi (inversion to n-type)
- unusual drop in CCE observed in low fluence range

ongoing work:

• neutron irradiated samples under investigation preliminary data presented (less pronounced increase in depletion voltage !)





**IV – ITC samples** 

bias voltage [V]



## **IV – CNM samples**



