

Kinetic studies for n-irradiated Si with enhanced carbon concentration

Barbara Surma

Institute of Electronic Materials Technology, Warsaw, Poland

RD-50 Vilnius 4.05 – 6.05.2007 OUTLINE

- >Motivation
- >Experimental details:
 - measurement technique,
 - sample preparation,
 - annealing processes
- >Experimental results
- >Approximation of the experimental data by a first order diffusion limited model
- >Fitting procedure by a multi-reaction model
- **>Results of fitting procedures**
- ≻Summary

Motivation

To find out how the carbon concentration affects the kinetics of annihilation and generation of the main oxygen related complexes VO and VO₂ in neutron irradiated silicon

Experimental details

Sample preparation:

Silicon 2 mm thick wafers were cut from n and p type CZ-Si and n type FZ-Si crystals with different carbon concentration.

>Oxygen concentration for CZ-Si crystals was 9.5-12*10¹⁷at/cm²

> Calculation of O and C concentrations from FTIR absorption measurements individually for each wafer before irradiation with taking into account its radial distribution.

>Irradiation with the neutron dose of 1*10¹⁷ n/cm²

Cutting the wafers into samples of dimension 8x12x2mm³

Calculation O and C concentrations individually for each sample after irradiation

Heat treatment

➢Isothermal annealings at 300°C, 312°C, 325°C, 330°C and 350°C for 5- 2000 minutes were performed

➢ After each annealing process the absorption measurements were carried out and concentrations of oxygen and carbon were determined from the intensity of absorption lines at 1107cm-1 an 607cm-1, respectively.

Basic characteristics of as-grown and as-irradiated wafers

TABLE I Parameters for studied crystals												
Dose	crystal	type	resistivity omcm	[O]*10 ¹⁷ center	[O]*10 ¹⁷ edge	[C]*10 ¹⁶	abs.coeff. VO 831cm ⁻¹ center	abs. coeff. VO 831cm ⁻¹ edge	abs. coeff. C _I -O 861 cm ⁻¹	D[O] *10 ¹⁷ at/cm ⁻³ center	D[O] *10 ¹⁷ at/cm ⁻³ _{edge}	D[C] cent/edge *10 ¹⁶ at/cm ⁻³
	HL1			8.77	6.24	1.7- <det< td=""><td>0.576</td><td>0.471</td><td>0.096-0.086</td><td>0.63</td><td>1.2</td><td>3.3/4.4</td></det<>	0.576	0.471	0.096-0.086	0.63	1.2	3.3/4.4
	HL2			9.88	8.5	0.58-1.1	0.555	0.515	0.13-0.099	0.36	0.9	3.7/3.3
neutron	HL3			8.7	8.01	-	0.53	0.495	0.035-0.045	1.4	1.2	2.7
irradiated	HL4			9.02	8.7	1.09- <det< td=""><td>0.54</td><td>0.52</td><td>0.07/0.08</td><td>0.56</td><td>0.9</td><td>2/2.4</td></det<>	0.54	0.52	0.07/0.08	0.56	0.9	2/2.4
1*10 ¹⁷ n/cm ²	HL5			11	10.6	-	0.508	0.517	-	1.3	2.4	<det< td=""></det<>
	HL6			1.69	1.69	<det< td=""><td>0.253</td><td>0.253</td><td>0.0219</td><td>0.15</td><td>0.15</td><td><det< td=""></det<></td></det<>	0.253	0.253	0.0219	0.15	0.15	<det< td=""></det<>
	HL7			-	-	2.18	-	-	-	-		2.6
	L1	n	14	9.4	7.5	5.0-4.9-4.4	-		-			
	L2	р	16	10.24	9.4	4.3	-		-			
	L3	р	8	10.09	9.1	2.75-2.6	-		-			
nonirradiated	L4	р	8	9.58	8.97	3.03/2.4	-		-			
	L5	р	10	12.6	12.4	0.8	-		-			
	L6	n	800	1.84	1.83	1	-		-			
	L7	р	800	-	-	4.85	-		-			

Absorption spectra for sample from H1 crystal versus time of annealing at T=312°C [C]=5*10¹⁶ at/cm³[O]=9.4* 10¹⁷ at/cm³

VO - 830cm-1 C_iO_i -862cm-1 VO_2 - 889cm-1 O_i - 1107cm-1 C_s - 607cm-1

Absorption spectra for oxygen-related defects

VO - 830 cm^{-1} $C_i O_i - 862 \text{ cm}^{-1}$ $VO_2 - 889 \text{ cm}^{-1}$ $V_2 O - 839 \text{ cm}^{-1}$ $V_2 O_2 - 824 \text{ cm}^{-1}$ $V_3 O_2 - 834 \text{ cm}^{-1}$

Deconvolution

The intensity of the absorption band at 830 cm⁻¹ related to VO defects versus time of annealling

H1 VO 830 cm⁻¹ f(T) 0.6000 0.4000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.0000 0.0000 0.500 1000 1500 2000 2500

[C]=0.8*10¹⁶ at/cm3

$[C] = 5*10^{16} \text{ at/cm}3$

Model of diffusion limited processes (1)

The rate equation for defect N which disappears through a firstorder diffusion-limited processes X+N⇒Z

$$\frac{\partial [N]}{\partial t} = k * [X]_{t=0} * [N]$$

$$k = 4\pi RD$$

$$D = D_X + D_N$$

R - rate capture radius; D - diffusion coefficient ; k-rate constant ;

Model of diffusion limited processes (2)

$$[N] = [N]_{t=0} * \exp(-k t)$$

$$k * t = Ln \frac{[N]}{[N]_{t=0}}$$

$$k = k_0 * \exp(\frac{-E_a}{k_B T})$$

E_a – activation energy for the process

From the temperature dependence of the reaction rate k the activation energy is determined

Logarithmic plots of normalised absorption coefficient for VO versus time of annealing at 325°C for the samples with different carbon concentration

temperature

RD-50 Vilnius 4.05 – 6.05.2007 Arrhenius plots for the fast component of the annihilation of VO defects

Effect of carbon concentration on the activation energy of the annihilation process of VO complexes

B. Svenson and J. L. Lindström: Phys. Rev. B34, (1986), 870,

C. A. Londos, N. V. Sarlis, L. G. Fytros: J. Appl. Phys. V85, (1999), 8074-78.

The intensity of the absorption band at 824 cm⁻¹ related to V_2O_2 defects

Logarithmic plots of normalised absorption coefficient for V₂O₂ versus time of annealing at various temperatures for the samples from the H1 crystal

Activation energy for anihilation of V₂O₂ complex

Annihilation of C_iO_i defects

Arrhenius plot E_a=1.9eV

(1)

(2)

(3)

(4)

(7)

(8)

(9)

(10)

Multi-reaction model

 $k0=4\pi R(Dvo+Do)$ $k1=D_d$ k2=4πR(Dvo+Di) $k3=4\pi R(Dv+D_{Oi})$ $V+O \Rightarrow VO$ $k6=4\pi R(D_{CiOi}+Dv)$ k7=D_{CiOidysoc} $k8=4\pi R(D_{vo2}+Do)$ $VO2+O \Rightarrow VO3$ $k9=4\pi R(D_{Ci}+D_{Oi})$

 $VO+Oi \Rightarrow VO2$ $VO \Rightarrow V+Oi$ VO+I⇒ Oi $k4=4\pi R(Dvo+Dv)$ $VO+V \Rightarrow V_2O$ eliminated (5) $k5=4\pi R(Dvo+Dvo)$ $VO+VO \Rightarrow VO_2+V$ eliminated (6) $CiOi+V \Rightarrow Cs+Oi$ CiOi ⇒ Ci+Oi *Ci+Oi ⇒ CiOi*

Reaction kinetics

 $d(VO)/dt = -4\pi R(Dvo+Doi)[VO][Oi] - Dd[VO] - 4\pi R(Dvo+Di)[VO][I] + 4\pi R(Dv+Doi)[V][Oi] - 4\pi R(Dvo+Dv)[VO][V] - 4\pi R(Dvo)^{2}$

 $dOi/dt = +4\pi R(Dvo+Di)[VO][I] Dd[VO]-4\pi R(Dvo+Doi)[VO][Oi] 4\pi R(Dv+Doi)[V][Oi]+4\pi R(DCiOi+Dv)[CiOi][V]$

 $d(VO2))/dt=+4\pi R(Dvo+Doi)[VO][Oi] + 4\pi R(Dvo]^2 + 4\pi R(DCiOi+Di)[CiOi][I]$

 $d(V)/dt=+Dd[VO] 4\pi R(Dv+DOi)[V][Oi]-4\pi R(Dvo+Dv)[VO][V]+4\pi R(Dvo]^{2}-4\pi R(DCiOi+Dv)[CiOi][V]$

 $d(I)/dt = -4\pi r R(Dvo+Di)[VO][I] - 4\pi R(DCiOi+Di)[CiOi][I]$

d(Ci)/dt=-4πR(DCi+DOi)[Ci][Oi]+DCiOidys*[CiOi]

d(V2O)/dt=4πR(Dvo+Dv)[VO][V]

 $d(CiOi)/dt = -4\pi R(DCiOi+Dv)[CiOi][V]+DCiOidys*[CiOi]+4\pi R(DCi+DOi)[Ci][Oi]$

RD-50 Vilnius 4.05 – 6.05.2007 Fitting results

The role of V+O=VO reaction

 $\begin{pmatrix} (7 \cdot 10^{16}) \\ 6 \cdot 10^{16} \\ \frac{Z_{i,1}}{4} \cdot 10^{16} \\ \frac{Z_{i,1}}$

Not considered

The role of VO₂+O=VO₃ reaction

Not considered

considered

Effective diffusion coefficient for I

 $D_{I} = 3.8 \times 10^{-14} \text{ cm}^{2}/\text{s}$

 $D_{I} = 3.8 \times 10^{-13} \text{ cm}^{2/\text{s}}$

Activation energy for diffusion coefficient D for VO₂ defects

Activation energy for diffusion of VO complex

Activation energy for dissociation of C_iO_i defects

Conclusions (1)

>The kinetic studies of formation and annihilation of complex defects involving oxygen and carbon atoms for the neutron irradiated silicon with enhanced carbon concentration have been performed.

> The concentrations of the defects were calculated from the intensity of the FTIR absorption measurements.

> The temperature dependences of the reaction rate constants have been determined and activation energies for annihilation of V_2O_2 and C_iO_i defects have been found to be 1.7 eV and 1.9 eV, respectively

➤An effect of the carbon concentration on the reaction rate constants for the annihilation of VO defect has been observed. The increase of the carbon concentration resulted in decreasing the activation energy of the annihilation process

Conclusions (2)

>A multi-reaction model has been used for the fitting the experimental data. The fitting procedure allowed to determine :

- the activation energies for diffusion of VO and VO_2 complexes approximately equal to 1.35eV and 0.84 eV, respectively,

- the activation energy for dissociation of C_iO_i complex approximately equal 2.3 eV.

Acknowledgements

Acknowledgements:

The author thanks dr Vladimir Cindro and dr Michael Moll for neutron irradiations.

Diffiusion coefficient of V and I

According to Sinno D_V, D_I are expressed by the formulas: D_V=1*10⁻³exp(-0.457/kT) i D_I= 0.242exp(-0.937/kT)

So at T=350oC D_v =2.035*10⁻⁷ cm²/s and D_i =6.53*10⁻⁹ cm²/s.

T. Sinno, R. A. Brown, W. Von Ammon, E. Dornberg, Appl.Phys.Lett. V70(17) 2250-2252, 1997

Dissociation

Dissociation process

$$\frac{\partial [N]}{\partial t} = D_{dys} * [N]$$

D_{dys}-rate constant for dissociation

RD-50 Vilnius 4.05 – 6.05.2007 The range of uncertainty for fitting parameters

	at/cm ³													
	[VO]	[0]	[I]	[V]	[CiOi]	D_{VO}	D _O	DI	D_V	D_{VO2}	D _{dysCiOi}	D _{CiOi}	D _{dysVO}	D _{Ci}
	*10 ¹⁶	*10 ¹⁷	*10 ¹⁶	*10 ¹⁶	*10 ¹⁶	*10 ⁻¹⁶	*10 ⁻²²	*10 ⁻¹⁴	*10 ⁻¹⁵	*10 ⁻¹⁶	*10 ⁻³	*10 ⁻¹⁴	*10 ⁻⁴	*10 ⁻¹⁵
300oC	5.76	8.77	3.5	2	3.5	0.85	5	0. 3	0.2	0.7	0.5	0.05	4	0.01
300oC	5.76	8.77	3.5	1	3.5	0.85	5	0. 3	0.2	0.7	0.5	0.05	0.4	0.01
300oC	5.76	8.77	6	4.5	3.5	0.85	5	0.45	0.2	0.8	0.4	0.1	0.4	0.01
312oC	5.76	8.77	7	10	3.8	1.8	5	0.8	0.09	0.9	0.6	0.25	0.4	0.1
312oC	5.76	8.77	7	10	3.8	1.8	5	0.8	0.12	1	0.6	0.25	4	0.1
325oC	5.76	8.77	7.5	5.2	3.8	2.7	5	10	15	1.6	3	1.5	4	0.1
325oC	5.76	8.77	7.5	5.2	3.8	2.7	5	10	15	1.6	3	1.5	0.4	0.1
312oC	5.56	9.88	6	6.5	4.5	1.5	5	0.5	0.1	0.8	0.7	0.1	4	0.01
312oC	5.56	9.88	5	4.5	4.5	1.5	5	0.7	0.2	0.8	0.8	0.2	4	0.01
325oC	5.6	9.88	8	6.5	4.6	2.5	5	8	10	1	3	1.5	4	0.1
325oC	5.6	9.88	8.5	7.5	4.6	2.5	5	8	7	1.1	2.5	1.5	4	0.1
325oC	2.2	1.80	3	1.1	1.1	2.6	5	20	20	1.3	2	0.7	4	0.12
325oC	2.2	1.80	6.8	6	0.96	3.8	5	3.5	0.7	1.3	1.9	0.4	4	-
335oC	1.7	2.00	7.2	5.9	0.7	4	5	45	80	1.5	0.8	1.2	4	0.1
335oC	1.7	2.00	6.9	5.8	0.7	4	5	45	80	1.5	5	1.2	4	0.1

Fitting Parameters

							TABLE II								
	Fitting parameters														
	Tempera	at/cm ³	cm²/s	cm²/s	cm²/s	cm²/s	cm²/s	s ⁻¹	cm²/s	s ⁻¹	cm²/s				
Sample	ture	[VO]	[O]	[I]	[V]	[CiOi]	D _{VO}	DO	DI	D _V	D _{VO2}	D _{dysCiOi}	D _{CiOi}	D _{dysVO}	D _{Ci}
	[°C]	*10 ¹⁶	*10 ¹⁷	*10 ¹⁶	*10 ¹⁶	*10 ¹⁶	*10 ⁻¹⁶	*10 ⁻²²	*10 ⁻¹⁴	*10 ⁻¹⁵	*10 ⁻¹⁶	*10 ⁻³	*10 ⁻¹⁴	*10 ⁻⁴	*10 ⁻¹⁵
H1	300	5.76	8.77	6	5.5	3.5	0.8	5	0.4	0.2	0.8	0.3	0.1	4	0.01
	312	5.76	8.77	7	10	3.8	1.8	5	0.8	0.12	1	0.6	0.25	4	0.1
	325	5.76	8.77	7.5	5.4	3.8	2.7	5	10	8	1.6	3	1.5	4	0.1
	335	5.76	8.77	9.5	6.5	3.8	4	5	11	12	2	5.5	1	4	0.1
	350	5.76	8.77	6	2	3.8	6.5	5	15	25	2.5	12	1.5	4	0.1
H2	300	5.56	9.88	2.4	2	4.5	0.85	5	0.7	0.7	0.5	0.4	0.4	4	0.01
	312	5.56	9.88	6	6.5	4.5	1.5	5	0.5	0.1	0.8	0.7	0.1	4	0.01
	325	5.6	9.88	8	6.5	4.6	2.5	5	8	10	1	3	1.5	4	0.1
	335	5.56	9.88	10	8	4.5	4	5	10	9	1.4	4.5	1.2	4	0.1
	350	5.26	9.88	6	3	4.6	7	5	15	35	2	13	1.0	4	0.1
H3	300	5.6	8.70	5	4.3	3.2	0.7	5	0.7	0.7	0.5	0.4	0.6	4	0.01
	312	5.8	8.70	6	4.5	1.5	1.5	5	0.5	0.1	0.8	0.7	0.1	4	0.02
	325	5.37	8.70	7.3	5	1.8	2.7	5	10	10	1.2	5	1.5	4	0.1
	335	5.37	8.70	10	8	2.2	4	5	10	9	1.4	4.5	1.2	4	0.1
	350	5.4	8.70	6	2.3	2	7	5	12	50	2.5	14	1.5	4	0.1
H4	300	5.4	9.00	5	4.8	3.01	0.8	5	0.7	0.4	0.6	0.5	0.2	4	0.01
	312	5.4	9.02	6	4.5	3	1.7	5	0.4	0.1	0.9	1.1	0.1	4	0.08
	325	5.4	9.02	7.5	5.8	3.3	2.7	5	12	20	1.4	3	0.7	4	0.12
	335	5.8	9.02	6	3.3	3	4	5	12	15	1.5	5	1.5	4	0.1
	350	5.4	9.02	6	2	2.7	8	5	12	50	2.5	14	1.5	4	0.1
H5	300	5.5	11.00	2.2	2	<1	0.85	5	0.9	0.4	0.5	-	-	4	-
	312	5.1	11.00	4	5	<1	1.7	5	0.7	0.1	0.6	-	-	4	-
	325	5.6	11.00	6.5	5.5	<1	3	5	12;18	15-20	1.2	-	-	4	
	335	5.3	11.00	6	4.3	<1	5	-5	12	15	2.5	-	-	4	-
	350	5.38	11.00	7	4.5	<1	8.5	5	15	20	2	-	-	4	-
H6	300	1.9	2.00	3	1.8	0.9	0.85	5	0.7	0.2	0.6	0.4	0.2	4	0.01
	312	2	2.10	6	6.3	0.8	1.6	5	1.3	0.1	0.7	0.8	0.4	4	0.1
	325	2.2	1.80	3	1.1	1.1	2.6	5	20	20	1.3	2	0.7	4	0.12

SET OF EQUATIONS TO BE SOLVED

Deconvolution results

				TABLE II T=300°C										
Sample	thickness	Abs. Line	as irradiated	TX1 300oC/40' abs.coeff. [cm-1]	TX2 300oC/45' abs. coff [cm-1]	TX3 300oC/45' abs.coeff [cm-1]	TX4 300oC/45' abs.coeff. [cm-1]	TX5 300oC/170' abs.coeff. [cm-1]	TX6 300oC/200' abs.coeff. [cm-1]	TX7 300oC/235' abs.coeff. [cm-1]	TX8 300oC/300' abs.coeff. [cm-1]	TX9 300oC/250' abs.coeff. [cm-1]	TX10 300oC/345' abs.coeff [cm-1]	TX11 300oC/315' abs.coeff. [cm-1]
Total time [min]			0	40	85	130	180	350	550	785	1085	1335	1680	1995
1/T														
H1K	0.197	V ₂ O ₂ _824		0.2768	0.2929	0.2538	0.2366	0.2119	0.2000	0.1815	0.1300	0.1648	0.1368	0.1532
od TX2	0.186	VO_830	0.5762	0.5560	0.5482	0.5035	0.4822	0.4227	0.3414	0.3118	0.2263	0.2114	0.1878	0.1467
		836		0.1295	0.1149	0.1398	0.1413	0.1375	0.1511	0.1367	0.1540	0.1529	0.1593	0.1902
		V ₂ O_839		0.1654	0.1774	0.1613	0.1647	0.1766	0.1839	0.2021	0.1909	0.2215	0.2153	0.2117
H2D	0.2	V ₂ O ₂ _824		0.2672	0.2889	0.2470	0.2510	0.1823	0.1929	0.1680	0.1416	0.1540	0.1211	0.1202
od TX2	0.185	VO_830	0.5556	0.5315	0.5747	0.5329	0.4950	0.3974	0.3805	0.2842	0.2840	0.2198	0.1993	0.1508
		836		0.1236	0.1336	0.1278	0.1336	0.1298	0.1358	0.1824	0.1172	0.1535	0.1574	0.1327
		V ₂ O_839		0.1515	0.1639	0.1638	0.1597	0.1591	0.1840	0.1996	0.2038	0.2160	0.2175	0.1903
H3H	0.202	V ₂ O ₂ _824		0.2315	0.2483	0.2187	0.2230	0.2002	0.1704	0.1448	0.1244	0.1178	0.1068	0.0912
od TX2	0.191	VO_830	0.5369	0.5233	0.5012	0.4764	0.4411	0.3885	0.3304	0.2832	0.2373	0.1911	0.1672	0.1673
		836		0.1121	0.1098	0.1227	0.1174	0.1165	0.1313	0.1154	0.1420	0.1514	0.1430	0.1444
		V ₂ O_839		0.1476	0.1513	0.1498	0.1524	0.1543	0.1647	0.1737	0.1888	0.1895	0.2220	0.2088
H4I	0.202	V ₂ O ₂ _824		0.2274	0.2409	0.2282	0.2194	0.1957	0.1710	0.1554	0.1232	0.1256	0.1152	0.1389
od TX2	0.194	VO_830	0.5380	0.4967	0.4942	0.4815	0.4506	0.4046	0.3579	0.2906	0.2566	0.2319	0.1982	0.1553
		836		0.1386	0.1072	0.1211	0.1150	0.1310	0.1319	0.1365	0.1465	0.1388	0.1399	0.1729
		V ₂ O_839		0.1425	0.1381	0.1484	0.1464	0.1526	0.1711	0.1858	0.2058	0.1957	0.2066	0.2101
H5A	0.215	V ₂ O ₂ _824		0.2394	0.2244	0.2206	0.2075	0.1735	0.1569	0.1423	0.1274	0.1058	0.1120	0.1209
od TX2	0.205	VO_830	0.5087	0.5340	0.5083	0.4818	0.4761	0.3980	0.3764	0.3106	0.2523	0.2215	0.1954	0.1582
		836		0.1201	0.1230	0.4818	0.1053	0.1370	0.1161	0.1243	0.1430	0.1661	0.1350	0.1620
		V ₂ O_839		0.1373	0.1491	0.1490	0.1437	0.1555	0.1653	0.1842	0.1960	0.2132	0.2131	0.1991
H6F	0.2	V ₂ O ₂ _824		0.1101	0.1184	0.1056	0.0951	0.0775	0.0721	0.0702	0.0466	0.0508	0.0415	0.0389
od TX2	0.193	VO_830	0.1808	0.1860	0.1860	0.1498	0.1455	0.1304	0.1008	0.0917	0.0652	0.0560	0.0454	0.0260
		836		0.0727	0.0808	0.0958	0.0899	0.0904	0.0957	0.0941	0.0788	0.0828	0.0849	0.0655
		V ₂ O_839		0.0827	0.0930	0.0883	0.0896	0.0917	0.0896	0.1014	0.0774	0.0853	0.0872	0.0822