

of GLASGOW

3D production status in CNM and IceMOS

Celeste Fleta

Richard Bates, Chris Parkes, David Pennicard – University of Glasgow

Manuel Lozano, Giulio Pellegrini – CNM (Barcelona)

Outline

- 1) Fabrication of Double-sided 3D detector structures at CNM
- 2) Fabrication of Full 3D detectors in IceMOS
- 3) Bump bonding

Double-sided 3D at CNM

- Double-sided design proposed by CNM
- 4" masks designed by CNM and Glasgow and funded by RD50 common fund
- Aim to fabricate devices at CNM with n- and p-type wafers

Characteristics of the double-sided 3D

- Electrodes etched from opposite sides of the wafer
- Double side processing
- Short charge collection times because both carrier types mainly drift horizontally
- High drift velocity as the electric field can be increased even after full depletion → radiation hardness

See simulation work in David's talk

The electrodes are <u>partially</u> filled with poly and passivated with TEOS oxide

Fabrication sequence: 1st N⁺ holes (etch – poly layer – P doping – TEOS) 2nd P⁺ holes (etch – poly layer – B doping – TEOS)

Key steps

- 1. Hole etching
 - 10μm diameter, 250μm deep (a/r 25:1)
 - Al mask
- 2. Double-side alignment
- 3. Electrode doping and filling

CNM 4" wafer design

Processing status

- 1st : p readout columns in an n-type bulk
 - ATLAS pixels won't work (e- readout)
 - Still have Medipix, Pilatus, strips, pads!
 - Status:
 - First run had to be halted due to problems with the TEOS oxide
 - Second run (4 wafers) in process ~ 1 month
- 2nd: n readout columns in a p-type bulk
 - Electrode insulation with p-stops
 - Begin estimate: Sept 2007

Full 3D detectors at Glasgow

• Project Glasgow/Diamond Light Source to develop 3D detectors for X-ray diffraction experiments at the DLS synchrotron

- Full 3D detectors on n-type Si
 - Fabrication by IceMOS Technology Ltd. (Belfast)
- 3-stages production plan:
 - 1. Hole etching optimization
 - 2. Doping optimization
 - 3. Device production (3 runs)
- Prototype 3D detectors will be integrated and tested with existing r/o electronics
 - Medipix2, Pilatus, Hermes and Beetle readout chips
 - − Readout in p-electrodes \rightarrow hole collection

The DLS Synchrotron at Oxfordshire

Full 3D detectors at Glasgow

- Project Glasgow/Diamond Light Source to develop 3D detectors for X-ray diffraction experiments at the DLS synchrotron
 - Full 3D detectors on n-type Si Fabrication by IceMOS Technology Ltd. (Belfast) hrotron at Oxfordshire 3-stages production plan: 1. Hole etching optimization First run in progress! 2. Doping optimization Devices ~ 2 months 3. Device production (3 runs) Prototype 3D detectors will be integrated and test / with kisting r/o electronics
 - Medipix2, Pilatus, Hermes and Beetle readout chips
 - − Readout in p-electrodes \rightarrow hole collection

IceMOS process flow

n---

- 1. n-type Silicon, 500µm
- 2. Oxidation

- 6. Oxidize to protect columns
- 7. P-electrodes

8. Grind/polish to

sides

expose electrodes

in front and back

- Hole patterning and ICP etching (~250µm)
- 4. Poly filling and doping with P

9. Oxidize to protect surfaces

5. Poly planarization front and back

10. Open contacts, metal, passivation

Final device

- **Readout in p-columns** only → no p-stops necessary
- Bias in n-columns
- Contacts on the top → need rerouting metal lines that connect all the n+ columns

Glasgow 4" wafer design

Pixel detectors

- 4 Medipix2
 - Pitch 55 µm, 256x256
- 6 Pilatus
 - Pitch 172 µm, 97x60
 - 1, 4 or 9 cells/pixel

Strip detectors

- 4 large ("Beetle") strips
 - Pitch 80 µm, 128x100
- 22 small ("Hermes") strips
 - Pitch 125 µm, 32x10
 - Square or hexagonal cell

Pad detectors, test structures

Medipix2

Pilatus

- Photon counting chip designed by PSI for synchrotron applications
- Hole collection
- Pitch 172 µm, 60x97 pixels
- 3D detector: 1, 4 or 9 cells per pixel
 - Hole distance: 172, 86 or 57.3 μm

(1 cell = 1 central p-hole surrounded by 4 n-holes)

1 cell/pixel

4 cells/pixel

9 cells/pixel

Strip detectors

- Large strip detectors
 - Designed for the LHCb (Beetle) r/o chip
 - 128 strips, pitch 80 µm, 100 columns/strip, DC coupled
- Small strip detectors
 - Hermes r/o chip (BNL, spectroscopy)
 - 32 strips, pitch 125 µm, 10 columns/strip, DC coupled
 - Square and hexagonal designs

Bump bonding

- Key aspect for pixel detectors
- Indium bump bonding technology available at Freiburg
 - Yield studies with CNM bump test structure currently being carried out
- Quote from commercial vendor for Medipix for first CNM 3D wafers
 - RD50 funding requested
- Other institutes developing bump bonding processes (*future* runs)
 - Diamond/RAL: In
 - CNM: Sn/Ag electroplating

Summary

- Overview of 3D processing at CNM (Barcelona) and Glasgow
- CNM
 - Double-sided 3D detector structure
 - n- and p-type wafers
 - n-type almost finished (~1 month)
 - p-type also projected
- Glasgow
 - Fabrication at IceMOS Tech.
 - Full 3D detectors
 - n-type Si
 - First devices expected in August
 - Considering design modifications for next runs: active edges, n readout