10th RD50 Workshop

Radiation hard semiconductor devices for very high luminosity colliders Vilnius, Lithuania, June 3-6, 2007

Radiation-induced structure modification in monocrystalline silicon under high-energy ion irradiation

A.A. Aleev, Yu.V. Polovinkina, M.A. Kozodaev, O.N. Makeev, S.V. Rogozhkin, A.G. Zaluzhnyi

State Scientific Center of Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia

Introduction

Surface morphology and structural modification in silicon after 1.2 GeV C⁶⁺ and 21 MeV p⁺ irradiation.

- Material: n-Si(100) kef-4.5 (ρ =4.5 Ω cm)
- Specimen size: 7x7x0.3 mm, 10x10x0.3 mm
- Ions: C^{6+} , p^+
- Fluences(cm⁻²): $6x10^{11}$, $1x10^{12}$, $5x10^{14}$, $5x10^{15}$, $1x10^{16}$
- Temperature: room, 100-300°C,
- AFM, XDS, XPS

Specimen irradiation

- Source parameters:
 - Ion C^{6+}
 - Energy 1.2 GeV
 - projected range (SRIM) 14.2 mm
 - Fluence = $1 \times 10^{12} \text{ cm}^{-2}$
- assembly parameters:
 - n-Si (100)
 - thickness 0.3 mm
 - 10+8 specimens

nm C	6+ GeV			C. C
a Chapters		10 мм	8×0,3 мм	

Surface morphology

- specimens of type I (placed parallel to the beam)
 - hillocks form long straight lines
 - $d = 100 \pm 10 \text{ nm}$
 - h = 2-4 nm

- specimens of type II (placed perpendicular to the beam)
 - hillocks placed randomly
 - $d = 200 \pm 50 \text{ nm}$
 - h = 2-4 nm

AFM

3 months

Irr

Intermediate conclusions

 \checkmark After irradiation a number of hillocks emerged on the surface.

✓ Hillocks density increases with time.

 \checkmark If the ion beam is perpendicular to the specimen plane, only surface defects were found (no amorphization), but in the case of a parallel beam both changes in a surface and bulk can be observed.

✓ In a year amorphization dissolves (re-crystallization occurred)

✓ Nature of hillocks (oxides)

≻Arisen questions:

>Influence of irradiation parameters (energy, fluence) on hillocks formation

≻ The role of temperature in hillocks formation.

≻Typical hillocks nucleation time

≻The role of "tracks" in hillocks formation

Second experiment

- Source parameters:
 - Ion C^{6+}
 - Energy 1.2 GeV
 - projected range 14.2 ± 0.6 mm (approximately 47 plates)
 - Fluence = $6x10^{11}$ cm⁻²
- Assembly parameters:
 - n-Si (100)
 - thickness 0.3 mm
 - 97 perpendicular specimens

Proton irradiation

- Source parameters:
 - Ion H^+
 - Energy 21 MeV
- Fluences:
 - 5x10¹⁴ cm⁻²
 - 5x10¹⁵ cm⁻²
 - 1x10¹⁶ cm⁻²
- Assembly parameters:
 - n-Si (100)
 - specimen thickness 0.3 mm
 - 12 plates in the assembly

Inhomogeneous nucleation

•Round shaped areas filled with hillocks had emerged on the plates, irradiated up to $F=5x10^{15}$ cm⁻², after 5 weeks.

•Parameters of this "fountains":

- • $d = 10 100 \ \mu m$
- •h = 5 10 nm
- ■ $n = 10^7 10^8 \text{ m}^{-2}$
- $n_h \sim 3 \times 10^{10} \,\mathrm{m}^{-2}$
- the rest of the surface was covered with hillocks $n \sim 10^{10}$ m⁻².

Two types of "fountain" were found:

•with round areas with homogeneous distribution of hillocks (they are the biggest)

•with increasing hillock number density toward the center

Inhomogeneous nucleation

•Round shaped areas filled with hillocks had emerged on the plates, irradiated up to $F=5x10^{15}$ cm⁻², after 5 weeks.

•Parameters of this "fountains":

- • $d = 10 100 \ \mu m$
- ■*h* = 5 10 nm
- ■ $n = 10^7 10^8 \text{ m}^{-2}$
- $n_h \sim 3 \times 10^{10} \,\mathrm{m}^{-2}$
- the rest of the surface was covered with hillocks $n \sim 10^{10}$ m⁻².

Iwo types of "tountain" were tound:

•with round areas with homogeneous distribution of hillocks (they are the biggest)

•with increasing hillock number density toward the center

Conclusions

- High energy ion irradiation results in surface modification (hillocks formation)
- > These precipitates are considered to consist of silicon dioxide
- Hillocks nucleation reveals a considerable delay (weeks, months) which depends on dose.
- Hillocks formation is a thermal activated process. Heating is increasing this process rate.
- Presence of the considerable hillock nucleation delay indicates that "tracks" influence is minimal (if any) in this process.
- Inhomogeneous hillock nucleation on structural defects (dislocations, etc.) becomes possible at intermediate fluences. As result fountain-like structures emerge.

