

Space charge sign inversion and electric field reconstruction in 24 GeV proton irradiated MCZ Si p⁺-n(TD)-n⁺ detectors processed via thermal donor introduction

Z. Li

Brookhaven National Laboratory, Upton, NY, USA E. Verbitskaya, V. Eremin, Ioffe Physico-Technical Institute of Russian Academy of Sciences St. Petersburg, Russia J. Härkönen

Helsinki Institute of Physics, CERN/PH, Geneva, Switzerland

10 RD50 Collaboration Workshop Vilnius, Lithuania, June 4-6, 2007

*This research was supported by the U.S. Department of Energy: Contract No. DE-AC02 -98CH10886

Outline

- 1. Background: specific features/advantages of p-type Si for development of radiation-hard detectors
- 2. Experimental: samples; measurement technique
- 3. Experimental results on TCT pulses after 24 GeV/c proton irradiation: SCSI in p⁺-n(TD)-n⁺ detectors
- 4. Approach for simulation of detector Double Peak response and E(x) profile reconstruction with a consideration of electric field in the "neutral" base
- 5. New method for E(x) reconstruction
- 6. Results on E(x) reconstruction in protons irradiated $p^+-n(TD)-n^+$ detectors
- Comparison of E(x) profile reconstructed from TCT data and E(x) profile simulated with a consideration of carrier trapping

Conclusions

Specific features and advantages of p-type Si for development of radiation-hard detectors

Recently development of Si detectors based on the wafers from p-type Magnetic Czochralski (MCZ) silicon became an attractive way for radiation hardness improvement [1]. The main advantage is that the major signal arises from electron collection which leads to efficient detector operation [2], and the detector is non-inverting after irradiation. Along with this, a single sided process can be used to fabricate n⁺-p-p⁺ detectors that facilitate device fabrication.

 J. Härkönen et al., Proton irradiation results of p⁺-n-n⁺ Cz-Si detectors processed on p-type boron-doped substrates with thermal donor-induced space charge sign inversion, NIM A 552 (2005) 43-48.
 C.G. Casse et al., NIM A 518 (2004) 340.

Experimental

V Samples:

p-type MCZ Si, as-processed p⁺-p-n⁺ structure (processed at HIP)

Treatment:

annealing at 430 C, Thermal Donor (TD) introduction →

Conversion to p⁺-n(TD)-n⁺

Irradiation: 24 GeV/c protons at CERN PS (*Thanks to Maurice!*) 7 fluences (8.10¹² p/cm² to 5.10¹⁴ p/cm²)

Experimental technique: TCT (measured at BNL and PTI)

V. Eremin, N. Strokan, E. Verbitskaya and Z. Li, NIM A 372 (1996) 388-298

SCSI in MCZ p⁺-n(TD)-n⁺ detectors

SCSI in MCZ p⁺-n(TD)-n⁺ detectors

2.14x10¹⁴ p/cm² DP, SC - (SCSI)

SCSI in MCZ p⁺-n(TD)-n⁺ detectors

4.2x10¹⁴ p/cm² DJ, SC - (SCSI), symmetrical TCT pulses

7

V_{fd} vs. F_p dependence

#	Fp (cm-2)	SC	V_fd (Q_V)
47	8.00E+12	positive	200
49	2.00E+13	negative	45
15	6.00E+13	negative	250
59	1.48E+14	DP to (-)	300
69	2.14E+14	DP to (-)	340
26	4.18E+14	DJ	
48	5.05E+14	DJ	

Approach for simulation of detector Double Peak response and E(x) profile reconstruction with a consideration of electric field in the "neutral" base

Initiated by PTI, developed in: 1) E. Verbitskaya et al. NIM A 557 (2006) 528; 2) E. Verbitskaya, pres. RESMDD'6, NIM A (in press)

Three regions of heavily irradiated detector structure are considered
 Reverse current flow creates potential difference and electric field in the neutral base

Transient current:

$$f(t) = \frac{Q_o \mu E}{d} e^{-t/\tau_{eff}}$$

$$\tau_{tr} = \frac{1}{\sigma v_{th} N_{tr}} \qquad N_{tr} = f(F)$$

New method for DP E(x) profile reconstruction

Developed at BNL

Method:

- based on three region model;
- describes induced current pulse arisen from carrier drift_

$$i(t) = \frac{Q_o v_{dr}}{d} \exp\left(-t/\tau_t\right) \qquad v_{dr} = \frac{\mu E(x)}{1+\mu E(x)/v_s}$$

• initial extraction of charge loss due to trapping \rightarrow "corrected" pulse response

$$i(t)_{corrected} = i(t) \cdot \exp(t / \tau_t(F_{neq})) = \frac{Q_o v_{dr}}{d}$$

 $\tau_t(F)$ – known from reference data (e.g. H.W. Kraner et al, NIM A326 (1993) 350-356, and G. Kramberger et al., NIM A481 (2002) 297)

- fitting of the "corrected" current pulse response →
 best matches the "corrected" current pulse response in:
- 1) the heights of the two current pulse peaks;
- 2) the shape and position of the minimum;
- 3) the time interval between the two current pulse peaks.

Results on E(x) reconstruction in proton irradiated p⁺-n(TD)-n⁺ detectors: proof of SCSI

Procedure of E(x) reconstruction

Variable parameters:
$$E_1, E_2, E_b$$

 W_1, W_b

$$d = W_1 + W_b + W_2$$
$$\int E dx = V$$

Fits of current pulse response at increasing bias voltage

N320-69 $F_p = 2.14 \cdot 10^{14} \text{ cm}^{-2}$

 $\tau_t = 25 \text{ ns}$

Fits may be done: - starting from pronounced Double Peak pulse shape - up to its conversion to Single Peak Shape

Evolution of E(x) profile at increasing bias voltage

 $F_p = 2.14 \cdot 10^{14} \text{ cm}^{-2}$

• At lower V maximal E is near the n⁺ contact, and $W_2 \approx 2W_1$

• This asymmetric distribution becomes enhanced at higher V.

• Finally, positively charged region is immersed by a region with negative charge.

Simulation of DP E(x) profile with a consideration of carrier trapping to midgap energy levels: E(x) and N_{eff}(x) vs. V

Parameters:

E. Verbitskaya pres. RESMDD'6, NIM A (in press)

- \checkmark introduction rate of generation centers m_i
- ✓ introduction rate of midgap deep levels, DA and DD
- \forall concentration ratio k = N_{DA}/N_{DD}
- ∀ bias voltage V
- ∀ temperature T
- ✓ detector thickness d

 \checkmark initial resistivity (shallow donor concentration N_o)

midgap DLs: *DD*: $E_v + 0.48 \ eV$ simulation is based on *DA*: $E_c - 0.52 \ eV$ Shockley-Read-Hall statistics

Comparison between E(x) profile reconstructed from current pulse response and E(x) profile simulation considering thermal carrier trapping to midgap DDs and DAs

Boundary condition for simulation: electric field at the p⁺ and n⁺ contacts equals to the electric field obtained from E(x) reconstructed from TCT pulses

Good agreement between two profiles

E(x) and N_{eff}(x) simulated considering free carrier trapping to midgap DDs and DAs

Conclusions

 \checkmark SCSI does occur in 24 GeV/c proton-irradiated p⁺n(TD)-n⁺ MCZ detectors!

- similar to n-type FZ and DOFZ Si

✓ This finding reverts us to the "puzzle" of space charge sign in 24 GeV proton irradiated n-type MCZ Si detectors –

whether there is a dependence on the sample pre-history?

 \checkmark New method of E(x) reconstruction in heavily irradiated Si detectors allows to get nice agreement between experimental "corrected" response independent on fluence, and a simulated response arisen from the carrier drift in detector bulk with three regions of electric field profile

Acknowledgements

This work was supported in part by:

- U.S. Department of Energy: contract No: DE-AC02-98ch10886,
- INTAS-CERN project # 03-52-5744,
- Grant of the President of RF SSc-5920.2006.2.

This work within the frame works of CERN RD39 and RD50 Collaborations.

Thank you for your attention!