P-type Silicon irradiated with 24 GeV/c protons

Vladimir Cindro¹, G. Kramberger¹,I. Mandić¹, M. Mikuž^{1,2}, M. Zavrtanik¹ 1-Jožef Stefan Institute, Ljubljana, Slovenia 2-Department of Physics, University of Ljubljana, Slovenia

Outline

- p-type Si serious candidate for trackers at LHC upgrade
- CCE depends on trapping. High E field, short drift length, proper readout side (electron signal dominates on nstrips) can reduce the effect of trapping on CCE
- p-type microstrip detectors with n-side readout have shown good performance after irradiation to high fluences

Description of silicon detectors

- Diodes n+-p-p+. Characteristics:
- active area: 5×5 mm2
- substrates:
- Silicon <100>; 300 ± 15 μm; 20kΩ·cm
- DOFZ <100>; 300 ± 15 μm; 20kΩ·cm, [O]~2*10¹⁷
- MCZ <100>; 300 ± 15 μ m; 5 kΩ·cm , [O]~5*10¹⁷
- guard ring: 200 µm wide at 100 µm distance from the central diode
- n+-p junction depth: 2 μm
- P concentration on surface: 2.10¹⁹ cm⁻³
- p+-n junction depth: 1.5 μm
- B concentration on backside surface: 10²⁰ cm⁻³
- Total dimensions of the device: 7.11×7.11 mm²
- Isolation: p-spray blanket, depth~2um, peak=10¹⁵cm⁻²

Fabrication procedure (CNM Barcelona)

- Summary of fabrication steps:
- Thick oxide growth (1 µm)
- Oxide patterning
- N+ implant
- Backside P+ implant
- Implant annealing (950°C, 30 min)
- Contact opening
- Metal deposition and patterning
- Metal annealing (350°C, 30 min)

Irradiations:

- Irradiations with 24 GeV/c protons at CERN
- Samples kept cool to prevent annealing

Fluence dependence of N_{eff}: p

Protons

CV Measurements taken after 3 weeks at 20°C (approxim. "stable" damage)

Neutrons

If ΔN_{eff} = g $\Phi_{eq} \rightarrow g \sim 1.05 \ 10^{-2} \ cm^{-1}$

g ~ 2 10⁻² cm⁻¹

CERN measur. 0.75 10⁻²cm⁻¹ (last workshop)

Annealing of N_{eff}:

Slopes:

Proton irradiated, $\Phi_{eq}^{=}$ 1.95 10¹⁴ cm⁻²

Annealing at $60^{\circ}C \rightarrow activation energy 1.25 \pm 0.05 eV$

Determination of $t_{eff,e,h}$ – Charge correction method (I)

Determination of $t_{eff,e,h}$ (II) – Charge correction method (II)

Charge increases with V for $V > V_{fd}$!

Measured

$$I_{m}(t) = I_{e,h}(t) = \left[e_{0} N_{e,h} \frac{1}{D} v_{e,h}(t)\right] \exp(\frac{-t}{\tau_{eff,e,h}})$$

Corrected
$$I_{c}(t) = I_{m}(t) \exp(\frac{t-t_{0}}{\tau_{tr}})$$

 Q_c =constant for $V>VFD \longrightarrow \tau_{tr}=\tau_{eff}$ (without trapping the signal of fully depleted detector doesn't depend on voltage)

Integral of signal

Hole signal

Electron signal

Bulk remains p-type

Trapping after annealing aq 60°C, measured at 20°C

Protons $Φ_{eq}$ = 1.07 10¹⁴ cm⁻² 1/τ = βΦ_{eq}

1000 min at 60°C \rightarrow 80 days at 20°C if E_a= 1.0 eV

Trapping after annealing at 60°C, measured at 20°C (neutrons)

1000 min at 60°C \rightarrow 80 days at 20°C if E_a= 1.0 eV

Summary

- long term annealing of N_{eff} in p-type material has same slope as in n-type
- activation energy is 1.25 ± 0.05 eV.
- protons produce about 40% more trapping than neutrons at same NIEL
- Trapping in in p-type silicon similar to trapping in n-type also after proton irradiation
- beneficial annealing of e-trapping not as evident as with neutron irradiated samples (annealing before the measurements started)
- harmfull annealing of h-trapping

FDV during annealing Pad detectors irradiated to 10¹⁴cm⁻²

