

Analysis of microinhomogeneity of irradiated Si by Hall and magnetoresistance effects

J.Vaitkus, A.Mekys, J.Storasta

Vilnius University, Institute of Materials Science and Applied Research

Hall factor

Hall scattering factor r_H is defined by following expressions:

 $r_{H} = \mu_{H} / \mu_{C} = \langle \tau^{2} \rangle / \langle \tau \rangle^{2}$

The relaxation time for individual scattering process often follows a power law:

$$\tau(E) \propto E^{-s}$$

Mechanism	S	r_H	r _{MP}	r _{MG}
Ionized impurities	-3/2	1.93	2.16	5.89
Neutral impurities	0	1	0	1
Acoustic phonons	+1/2	1.18	0.38	1.77
Etc.				

Variation of Hall scattering factor with total impurity density $N_{imp.}$ In *n*-type Si. Experimantal points: -x- 77K, -o- 300K. Solid curves: calculated (from Kirnas et al., 1974)

Inhomogeneities

<u>R. H. Bube</u> model :

[R. H. Bube, Appl. Phys. Lett. 13, 136 (1968)]

Inhomogeneities

V. G. Karpov, A. J. Shik and B. I. Schklovskij (1982):

The cells of typical clusters: I, II and III. Dashed lines indicates the equipotential lines

$$\mu_{H} = \mu_{0} \exp\left(-\frac{\varphi_{b}}{kT}\right)$$

Inhomogeneities

J. D. Albrecht et al. (1999):

When the mobility is limited solely by dislocation scattering and this process can be modeled by scattering form a line charge, r_H can be estimated by computing the average momentum relaxation time. It follows from the analytic expression:

$$r_{H} = \frac{\pi}{8} \gamma \exp(-1/\gamma) [K_{2}(1/(2\gamma))]^{-2} [8 + 60\gamma + 210\gamma^{2} + 315\gamma^{3}]$$

 K_2 is the second order modified Bessel function and λ is the Debye screening length

Specifically, r_H is smaller than but close to 1.93

In summary, it is clear that to assume $r_H = 1$ in analyzing lowfield Hall data often leads to errors of 30% (and occasionally as much as 100%) in carrier density and mobility

Screening

Cluster's potential overlaps when n'decreases to 10^{11} cm⁻³ at irradiation doses above 10^{14} cm⁻²

The photo-carriers are trapped between barriers that they screen! EFFECTIVE darkness concentration seems low.

10 th RD 50 Workshop, Vilnius, 2007.06.04

10 th RD 50 Workshop, Vilnius, 2007.06.04

Annealing 80C

Acknowledgments: I am grateful to Gunnar Lindstroem for complicated and interesting samples ③

THANK YOU FOR YOUR ATTENTION