DEEP LEARNING INVARIANT MODELS

Radi Radev

EP-NU Meeting 17/5/2023

 $+$

 \overline{O}

AGENDA

Invariance and Covariance Toy Invariant Task Reweighting Neutrino Models Attention and Invariant Attention **Results** Future Plans

INVARIANCE AND COVARIANCE

 $+$

 \circ

 \bullet

 $+$

 \bullet

 \overline{O}

A Machine Learning Perspective

Invariance and Equivariance

Invariance

• The function f is invariant to permutations of its inputs

 $f(\mathbb{C}\mathbb{R}^n) = \mathbb{C}\mathbb{R}^n$

 $f(\frac{\mathcal{C}_{\mathbb{R}}}{\mathbb{R}}\mathcal{C}_{\mathbb{R}}\mathcal{C}_{\mathbb{R}})=\widehat{\mathcal{C}_{\mathbb{R}}}$

Equivariance (Covariance)

 \div

 Ω

• The function g is equivariant to permutations of its inputs

 f $(\mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R}) = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$

 f $(\mathbb{R} \times \mathbb{R} \times \mathbb{R}) = \mathbb{R} \otimes \mathbb{R} \oplus \mathbb{R}$

Invariant ML Models

- Convolutional models are naturally translation invariant and started the DL age
- As they learn a filter that slides along the image

 $+$

 $\mathbf O$

 $\mathbf O$

 $+$

Invariant ML Models in Physics

- We want to incorporate inductive biases in ML models to reduce the parameter space the model has to learn during training
- Allows the model to be more parameter and data efficient

 $+$

 \bullet

 \overline{O}

- Learning a classifier that tries to distinguish images of dogs and cats
- A convolutional model deals with the translational invariance in images

?

 Ω

- To illustrate how to incorporate more general invariances, we sample points along the outline
- The model only sees the sampled points

?

 Ω

?

- To illustrate how to incorporate more general invariances, we sample points along the outline
- The model only sees the sampled points

- To illustrate how to incorporate more general invariances, we sample points along the outline
- The model only sees the sampled points
- Randomly rotate the points before the model

- Train two models one with directly with the coordinates the other with the pairwise distances
- The model invariant to Euclidean transformations performs better and learns faster!

 \div

HIGH-DIMENSIONAL REWEIGHTING FUNCTIONS

 $+$

 Ω

 \bullet

 $+$

 \bullet

 \circ

And Where to Find Them

Neutrino Interaction Models

- Evaluating analyses with different neutrino interaction models allows us to evaluate uncertainties even if we don't have specific dials
- Detector simulation is computationally expensive $\circled{?}$
- Reweighting allows us to compare analyses with different neutrino generators without having to rerun the detector simulation \circledast

 Ω

Reweighting Neutrino Models

- An event can be represented as a set of n four-momenta $p_1, p_2, ..., p_n$ with each $p_i =$ $p_{\textstyle \scriptscriptstyle \mathcal{X}}$, $p_{\textstyle \mathcal{Y}}$, $p_{\textstyle \mathcal{Z}}$, E
- Using those we can calculate extra variables at the particle and event level.
- Our goal is to calculate weights which shift our nominal model to look like the target model
- For 1D and 2D (event level) we can simply take ratios of histograms

 Ω

ML Reweighting

- Machine learning models allow us to perform high -dimensional unbinned reweighting
- A classifier $f(x)$ trained with the binary cross -entropy loss would learn the likelihood -ratio:

$$
w_x = \frac{f(x)}{1 - f(x)}
$$

ATTENTION MECHANISM

 $+$

 \circ

 \bullet

Attention

• For two vectors q and k we can compute their similarity as:

$q \cdot k$

• Instead, if we want to compute this for n vectors, then we can represent them as matrices:

Similarity Complete Definition

• We can convert this to probabilities using the softmax function and use it to update our values:

 $f(Q, K, V) = \text{softmax}(QK^T) V$

• Where the softmax is normalized exponentiation:

$$
softmax(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}
$$

 QK^T

 $\mathbf O$

 $+$

Invariant Attention

• Compute invariant inter-particle quantities (i.e minkowski norm and inner product

 $w = (|p_i - p_j|)$, $(\langle p_i, p_j \rangle)$

• Add the invariant quantities as a bias to the queries and keys

 $Q = W_V(h) + \text{MLP}(w)$ $V = W₀(h) + \text{MLP}(w)$ $K = W_K(h)$

• Update the particle features

 $+$

 $\mathbf O$

 \hat{h} = softmax $(QK)V$

- Update the coordinates
	- $\widehat{p_i} = \text{softmax}\big(\text{MLP}(QK)\big) p_i$

RESULTS

Results

- Training the Lorentz transformer on [Top Quark Tagging](https://zenodo.org/record/2603256#.ZGSYoE9Bw2w) data.
- The network outperforms the baseline by a good margin and very close to state of the art
- Can be improved by further tuning

Result of models on the Top Tagging dataset

Future Plans

- Long(er) training (multi-GPU)
- Optimize architecture and training setup (e.g., bucket batching)

 $+$

 $\mathbf O$

- Apply the Lorentz Transformer to the reweighting task
- Consider other use cases of this approach and other physics-aware methods (e.g., incorporating systematic uncertainties)

 \overline{O}

THANK YOU

Radi Radev

$+$

 \circ

Backup

