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Invariance and Equivariance

Invariance Equivariance (Covariance)
* The function f is invariant to « The function g is equivariant to
permutations of its inputs permutations of its inputs
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Invariant ML Models

_ I(x)
« Convolutional models are
naturally translation invariant and
started the DL age
» As they learn a filter that slides
along the image f
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Invariant ML Models in Physics

« We want to incorporate inductive
biases in ML models to reduce the
parameter space the model has to
learn during training

» Allows the model to be more
parameter and data efficient
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Cat vs Dog with a Spin

» Learning a classifier that tries to
distinguish images of dogs and
cats

A convolutional model deals with
the translational invariance in
iImages




Cat vs Dog with a Spin

« To illustrate how to incorporate
more general invariances, we
sample points along the outline

« The model only sees the sampled
points
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Cat vs Dog with a Spin

* To illustrate how to incorporate
more general invariances, we
sample points along the outline

* The model only sees the sampled
points

« Randomly rotate the points before
the model




Cat vs Dog with a Spin

Train two models one with
directly with the coordinates the
other with the pairwise distances

The model invariant to Euclidean
transformations performs better
and learns faster!
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HIGH-DIMENSIONAL
REWEIGHTING
FUNCTIONS

And Where to Find Them



Neutrino Interaction Models 5

Estimated Uncertainty

« Evaluating analyses with different neutrino P
Interaction models allows us to evaluate
uncertainties even if we don’t have specific dials

* Detector simulation is computationally

expensive

 Reweighting allows us to compare analyses
with different neutrino generators without Next year's
having to rerun the detector simulation gener



Reweighting Neutrino Models

 An event can be represented as a set of n
four-momenta p,, p,, ..., p,, with each p; =

(px Py, P2 E)

» Using those we can calculate extra
variables at the particle and event level.

* Our goal is to calculate weights which shift
our nominal model to look like the target
model

* For 1D and 2D (event level) we can simply
take ratios of histograms
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Attention

Similarity

* For two vectors g and
k we can compute
their similarity as:

q-k

* Instead, if we want to
compute this for n
vectors, then we can
represent them as
matrices:

QK"

Complete
Definition
* We can convert this to
probabilities using the softmax

function and use it to update our
values:

f(Q,K,V) = softmax(QKT)V

* Where the softmax is normalized
exponentiation:

eXi

Zjexj

softmax(x;) =



Invariant Attention

 Compute invariant inter-particle
quantities (i.e minkowski norm and inner
product

WZ(Pi — Dj D((PL » Pj >)

« Add the invariant quantities as a bias to
the queries and keys

Q = Wy(h) + MLP(w)
V=W, (h) + MLP(w)
K = Wk (h)

 Update

S

the particle features

h = softmax(QK)V

« Update

A

p; = SO

the coordinates

ftmax(MLP(QK))p;






Results

= transformer pfn
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* Training the Lorentz transformer on e
Top Quark Tagging data.

0.92

 The network outperforms the
baseline by a good margin and
very close to state of the art

0.9

« Can be improved by further tuning

epoch

Model Accuracy | AUC l/en 1/en
’ (es =0.5) (s =0.3)
ResNeXt 0.821 0.8960 30.9 80.8
P-CNN 0.827 0.9002 34.7 91.0
PFN - 0.9005 | 34.7+04 —
ParticleNet 0.840 0.9116 39.8+0.2 98.6 = 1.3
EGNN 0.803 0.8806 | 26.3+0.3 76.6 £0.5
LGN 0.803 0.8324 16.0 44.3
LorentzNet 0.844 0.9156 | 42.44+0.4 | 110.2+1.3



https://zenodo.org/record/2603256#.ZGSYoE9Bw2w

Future Plans

* Longl(er) training (multi-GPU)

« Optimize architecture and training setup
(e.g., bucket batching)

* Apply the Lorentz Transformer to the
reweighting task

* Consider other use cases of this
approach and other physics-aware
methods (e.g., incorporating systematic
uncertainties)
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