DEEP LEARNING INVARIANT MODELS

Radi Radev

EP-NU Meeting 17/5/2023

AGENDA

Invariance and Covariance Toy Invariant Task Reweighting Neutrino Models Attention and Invariant Attention Results Future Plans

INVARIANCE AND COVARIANCE

+

0

+

0

A Machine Learning Perspective

Invariance and Equivariance

Invariance

The function *f* is invariant to permutations of its inputs

 $f(\mathfrak{G}) = \mathfrak{G}$

 $f(\mathfrak{G}(\mathfrak{G}),\mathfrak{G}) = \mathfrak{G}$

Equivariance (Covariance)

+

0

• The function *g* is equivariant to permutations of its inputs

 $f(\mathfrak{G}) = \mathfrak{G} \oplus \mathfrak{G}$

 $f(\mathfrak{G}(\mathfrak{G})) = \mathfrak{G}(\mathfrak{G}) \oplus \mathfrak{G}(\mathfrak{G})$

Invariant ML Models

- Convolutional models are naturally translation invariant and started the DL age
- As they learn a filter that slides along the image

0

+

•

0

+

Invariant ML Models in Physics

- We want to incorporate inductive biases in ML models to reduce the parameter space the model has to learn during training
- Allows the model to be more parameter and data efficient

- Learning a classifier that tries to distinguish images of dogs and cats
- A convolutional model deals with the translational invariance in images

- To illustrate how to incorporate more general invariances, we sample points along the outline
- The model only sees the sampled points

- To illustrate how to incorporate more general invariances, we sample points along the outline
- The model only sees the sampled points

- To illustrate how to incorporate more general invariances, we sample points along the outline
- The model only sees the sampled points
- Randomly rotate the points before the model

- Train two models one with directly with the coordinates the other with the pairwise distances
- The model invariant to Euclidean transformations performs better and learns faster!

+

HIGH-DIMENSIONAL REWEIGHTING FUNCTIONS

+

 \mathbf{O}

+

0

And Where to Find Them

Neutrino Interaction Models

- Evaluating analyses with different neutrino interaction models allows us to evaluate uncertainties even if we don't have specific dials
- Detector simulation is computationally expensive (2)
- Reweighting allows us to compare analyses with different neutrino generators without having to rerun the detector simulation (3)

Ο

Reweighting Neutrino Models

- An event can be represented as a set of *n* four-momenta $p_1, p_2, ..., p_n$ with each $p_i = (p_x, p_y, p_z, E)$
- Using those we can calculate extra variables at the particle and event level.
- Our goal is to calculate weights which shift our nominal model to look like the target model
- For 1D and 2D (event level) we can simply take ratios of histograms

Ο

ML Reweighting

- Machine learning models allow us to perform high-dimensional unbinned reweighting
- A classifier f(x) trained with the binary cross-entropy loss would learn the likelihood-ratio:

$$w_x = \frac{f(x)}{1 - f(x)}$$

ATTENTION MECHANISM

+

0

Attention

Similarity

• For two vectors q and k we can compute their similarity as:

$q \cdot k$

• Instead, if we want to compute this for *n* vectors, then we can represent them as matrices:

Complete Definition

 We can convert this to probabilities using the softmax function and use it to update our values: +

0

 $f(Q, K, V) = \operatorname{softmax}(QK^T)V$

• Where the softmax is normalized exponentiation:

softmax
$$(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

 QK^T

Invariant Attention

 Compute invariant inter-particle quantities (i.e minkowski norm and inner product

 $w = \left(\left| p_i - p_j \right| \right), \left(\left\langle p_i , p_j \right\rangle \right)$

 Add the invariant quantities as a bias to the queries and keys

 $Q = W_V(h) + MLP(w)$ $V = W_Q(h) + MLP(w)$ $K = W_K(h)$ • Update the particle features

+

0

 $\hat{h} = \operatorname{softmax}(QK)V$

- Update the coordinates
 - $\widehat{p_i} = \operatorname{softmax}(\operatorname{MLP}(QK))p_i$

RESULTS

Results

- Training the Lorentz transformer on <u>Top Quark Tagging</u> data.
- The network outperforms the baseline by a good margin and very close to state of the art
- Can be improved by further tuning

Result of models on the Top Tagging dataset

Model	Accuracy	AUC	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.5)}$	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.3)}$
ResNeXt	0.821	0.8960	30.9	80.8
P-CNN	0.827	0.9002	34.7	91.0
PFN	_	0.9005	34.7 ± 0.4	_
ParticleNet	0.840	0.9116	39.8 ± 0.2	98.6 ± 1.3
EGNN	0.803	0.8806	26.3 ± 0.3	76.6 ± 0.5
LGN	0.803	0.8324	16.0	44.3
LorentzNet	0.844	0.9156	42.4 ± 0.4	110.2 ± 1.3

Future Plans

- Long(er) training (multi-GPU)
- Optimize architecture and training setup (e.g., bucket batching)

+

Ο

- Apply the Lorentz Transformer to the reweighting task
- Consider other use cases of this approach and other physics-aware methods (e.g., incorporating systematic uncertainties)

0

THANK YOU

Radi Radev

+ •

0

Backup

