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Introduction

o past six years or so has seen a rapid rise of applications of machine learning (ML)
in fundamental science, particle physics, theoretical physics

o of course ML has been around for quite some time, especially in experimental 
particle physics

o nevertheless, there is an exponential increase in activity



Introduction

o find title learning on the 
iNSPIRE data base (high-
energy physics)

o exponential growth!



Opportunities in AI machine learning

o opportunities in experimental particle physics, astronomy, gravitational waves, …
(not discussed here)

o theoretical physics, lattice field theory

Applications of Machine Learning to Lattice Quantum Field Theory 
Boyda, Aarts, Lucini et al, contribution to Snowmass 2022 
arXiv:2202.05838 [hep-lat]



Outline: ML in lattice field theory

o configurations – generating ensembles, tuning algorithms

o observables – correlators, thermodynamics, …

o analysis – fitting, phase classification, ill-posed inverse problems, …

o more generally: which method to use, why does it (not) work, understand ML

Applications of Machine Learning to Lattice Quantum Field Theory, Boyda, Aarts, Lucini et al, arXiv:2202.05838 [hep-lat]



Outline: ML in lattice field theory

o configurations – generating ensembles, tuning algorithms
normalising flow, gauge equivariance

o observables – correlators, thermodynamics, …

o analysis – fitting, phase classification, ill-posed inverse problems, …
neural network outputs as physical observables

o more generally: which method to use, why does it (not) work
field theory approaches to understanding ML



Generating configurations
o well-known problems in MCMC: critical slowing down, topological freezing
o generate configurations starting from “simple” distribution
o perform change of variables to reach desired distribution: invertible map
o simple example

Box-Mueller transformation: from uniform distribution to Gaussian distribution

normalising flow, trivialising map

o many applications in e.g. image generation in ML literature
o applications to lattice field theory (since 2019)

Flow-based generative models for Markov chain Monte Carlo in lattice field theory
Albergo, Kanwar, Shanahan, Phys. Rev. D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]



Generating configurations: normalising flow

o from Gaussian distribution 𝑟 𝑧 to desired distribution 𝑝 𝜙
o generated by neural network, sequence of invertible (matrix+shift) transformations
o trained by minimising distance between learned and target distribution
o due to checkerboard structure: Jacobian of learned transformation is trivial
o “provably exact”: insert Metropolis-Hastings step at the end 

Introduction to Normalizing Flows for Lattice Field Theory, Albergo et al, arXiv:2101.08176 [hep-lat]
Aspects of scaling and scalability for flow-based sampling of lattice QCD, Abbott et al, 2211.07541 [hep-lat]



Normalising flow: applications to QCD
challenges:
o higher dimensions: not 2d (images), but 3d and 4d spacetime
o gauge symmetry: large internal symmetry, do not want to sample redundant dof
o construct gauge equivariant coupling layers (commute with gauge transformations)
o gauge invariant input distribution à gauge invariant output distribution 

first application in 4d QCD
with 𝑁! = 2 on a  4" lattice

o scalability?

Sampling QCD field configurations with gauge-equivariant flow models, 
Abbott et al, PoS LATTICE2022 (2023) 036 [2208.03832 [hep-lat]] 



Gauge equivariance

deep connections to recent developments in ML
o coordinate independence 
o local reference frame
o Convolutional Neural Nets on Riemannian manifolds
applications in 
§ vision
§ medical imaging
§ climate patterns

Coordinate Independent Convolutional Networks--Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds, 
Weiler, Forré, Verlinde, Welling, arXiv preprint arXiv:2106.06020 [cs.LG]
Gauge equivariant convolutional networks and the icosahedral CNN, Cohen, Weiler, Kicanaoglu, Welling
International conference on Machine learning, 1321-1330 [arXiv:1902.04615v3 [cs.LG]



More LFT applications of gauge equivariance

o lattice gauge equivariant convolutional neural networks, 
Favoni, Ipp, Mueller, Schuh, Phys. Rev. Lett. 128 (2022) 3, arXiv:2012.12901 [hep-lat] 

o gauge-equivariant pooling layers for preconditioners in lattice QCD 
Lehner and Wettig, arXiv:2304.10438 [hep-lat]

ü active field, interesting cross-talk with other ML applications
ü requires “theoretical physicists/QFT experts” to master formalism

opportunity for LFT community to contribute to ML world



Classification of phases of matter

o matter can exist in different phases
o prototype: 2d Ising model -> ordered/disordered or cold/hot phases
o task: determine phase a system is in, determine critical coupling or temperature

Ordered -- ? -- Disordered



Phase classification: (by now) standard procedure

o use your favourite architecture, e.g. Convolutional Neural Network

• input: train on sets of configurations away from the transition
• output: assign probability to be in ordered or disordered phase
o standard supervised classification problem
o apply to unseen configurations and predict



What can we add?

o give a physical interpretation to neural network (NN) prediction
o interpret output from a NN as an observable in a statistical system
• input: configurations, distributed according to Boltzmann weight
• output: observable, “order parameter” in statistical system
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Extending machine learning classification capabilities with histogram reweighting, 
Bachtis, Aarts, Lucini, Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]



Output of NN as physical observable

o once you accept this: opens up possibility to use “standard” numerical/statistical methods
histogram reweighting: extrapolation to other parameter values

o starting from computation at given 𝛽': extrapolate to other 𝛽 values 

< 𝑃 > 𝛽 =
∑𝑃#𝑒$ %$%" &!
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ü filled diamond at 𝛽'
ü line obtained by reweighting in 𝛽
ü open diamonds are independent cross checks 

2d Ising model



Critical behaviour from NN observables

• determine 𝐿 dependent susceptibility 𝛿𝑃 and its maximum at 𝛽((𝐿)

extract critical properties from 
NN observables only 

2d Ising model



𝜑! scalar field theory 

• reweight in mass parameter, 𝜇)

• identify regions where phase is clear
• transfer learning: retrain NN using 𝜇) < −1.0 and  𝜇) > −0.9
• repeat finite-size scaling analysis as in 2d Ising model

symmetry-broken symmetric

• same universality class as 2d Ising model
• critical mass in agreement with results 

obtained with standard methods 
(Binder cumulant, susceptibility)Mapping distinct phase transitions to a neural network, Bachtis, Aarts, Lucini

Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]



Quantum field-theoretical 
machine learning  

o improve understanding 
of ML using QFT techniques

o propose new formulations
using QFT intuition

Quantum field-theoretic machine learning, 
Bachtis, Aarts, Lucini, Phys. Rev. D 103 (2021) 074510 
[2102.09449 [hep-lat]]
Aarts, Lucini, Park (in preparation)



Example: Restricted Boltzmann Machine

two-layer generative network

o visible layer: to encode probability distribution
o hidden layer: to encode correlations

o restricted: no connections within a layer

o degrees of freedom on two layers can be spins, say ±1, or continuous, or mixed

o energy-based method:



Scalar field RBM
o use field theory approach: start with “free fields”: Gaussian-Gaussian RBM

o distribution:

o energy (or action):

o no interaction between nodes in a layer, bilinear coupling between layers

o start with quadratic terms, add interactions later, e.g.      terms

N

i= i= i=21

a= a= a=1 2 h

Nv



o two Gaussian fields with bilinear coupling 

o induced distribution on visible layer

o scalar field with kinetic (all-to-all) term
and source

Gaussian scalar field RBM

N

i= i= i=21

a= a= a=1 2 h

Nv



explicit representations for the weight matrix

1. is symmetric, positive-definite: use Cholesky decomposition
with      real lower triangular matrix with positive diagonal entries
hidden node 𝑎 connects to visible nodes with 𝑖 ≤ 𝑎 only

2. is symmetric, positive-definite: diagonalise using orthogonal transformation 

3. non-uniqueness: internal symmetry with
leaves invariant,  reshuffles hidden nodes

Some results for 𝑁" = 𝑁#



(infinitely) many solutions for weight matrix: 

1. Cholesky decomposition : triangular

2. diagonalisation : 

3. non-uniqueness: internal symmetry 

in practice
o all equally valid, realisation depends on initialisation
o non-observable degeneracy due to internal symmetry on hidden layer

Some results for 𝑁" = 𝑁#



o number of hidden nodes act as an ultraviolet regulator
o spectrum of induced quadratic operator on visible layer

o exact spectrum (𝜅) reproduced by RBM (𝜆) from smallest eigenvalue upwards 

Result for 𝑁" < 𝑁#

N

i= i= i=21

a= a= a=1 2 h

Nv

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



• applicable to typical ML 
data sets, such as MNIST

• analyse RBM using language
and intuition from LFT

• obtain some straightforward 
but rigorous results

• include interactions using statistical field theory methods, e.g. perturbation theory

Gaussian RBM for MNIST data with 𝑁" ≤ 𝑁"

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



Outlook

o inspiring connection between problems in lattice field theory and machine learning

o new solutions to old problems/old solutions to new problems

o insights work both ways: plenty of opportunities for impact in LFT and ML


