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Introduction

O past six years or so has seen a rapid rise of applications of machine learning (ML)

in fundamental science, particle physics, theoretical physics

o of course ML has been around for quite some time, especially in experimental
particle physics

o hevertheless, there is an exponential increase in activity
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Opportunities in A+ machine learning

o opportunities in experimental particle physics, astronomy, gravitational waves, ...
(not discussed here)

o theoretical physics, lattice field theory

Applications of Machine Learning to Lattice Quantum Field Theory
Boyda, Aarts, Lucini et al, contribution to Snowmass 2022
arXiv:2202.05838 [hep-lat]



Outline: ML in lattice field theory

o configurations — generating ensembles, tuning algorithms
o observables — correlators, thermodynamics, ...
o analysis — fitting, phase classification, ill-posed inverse problems, ...

o more generally: which method to use, why does it (not) work, understand ML

Applications of Machine Learning to Lattice Quantum Field Theory, Boyda, Aarts, Lucini et al, arXiv:2202.05838 [hep-lat]



Outline: ML in lattice field theory

o configurations — generating ensembles, tuning algorithms
normalising flow, gauge equivariance

o observables — correlators, thermodynamics, ...

o analysis — fitting, phase classification, ill-posed inverse problems, ...
neural network outputs as physical observables
o more generally: which method to use, why does it (not) work

field theory approaches to understanding ML



Generating configurations

well-known problems in MCMC.: critical slowing down, topological freezing
generate configurations starting from “simple” distribution
perform change of variables to reach desired distribution: invertible map

O O O O

simple example

Box-Mueller transformation: from uniform distribution to Gaussian distribution

normalising flow, trivialising map

o many applications in e.g. image generation in ML literature

o applications to lattice field theory (since 2019)

Flow-based generative models for Markov chain Monte Carlo in lattice field theory
Albergo, Kanwar, Shanahan, Phys. Rev. D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]



Generating configurations: normalising flow
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from Gaussian distribution r(z) to desired distribution p(¢)

generated by neural network, sequence of invertible (matrix+shift) transformations
trained by minimising distance between learned and target distribution

due to checkerboard structure: Jacobian of learned transformation is trivial

O O O O O

“provably exact”: insert Metropolis-Hastings step at the end

Introduction to Normalizing Flows for Lattice Field Theory, Albergo et al, arXiv:2101.08176 [hep-lat]
Aspects of scaling and scalability for flow-based sampling of lattice QCD, Abbott et al, 2211.07541 [hep-lat]



Normalising flow: applications to QCD

challenges:

o higher dimensions: not 2d (images), but 3d and 4d spacetime

o gauge symmetry: large internal symmetry, do not want to sample redundant dof

o construct gauge equivariant coupling layers (commute with gauge transformations)
o gauge invariant input distribution = gauge invariant output distribution
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10 04 Flow (512 PF)
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first application in 4d QCD
with Ny = 2 ona 4* lattice
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Sampling QCD field configurations with gauge-equivariant flow models, OHD 00005 050 DD 000 040 w0z o ot 02
Abbott et al, PoS LATTICE2022 (2023) 036 [2208.03832 [hep-lat]]

(a) Plaquette (b) Polyakov loop



(Gauge equivariance

deep connections to recent developments in ML
o coordinate independence

o local reference frame

o Convolutional Neural Nets on Riemannian manifolds
applications in

= vision

* medical imaging

= climate patterns

Figure 2. On curved spaces, parallel
transport is path dependent. The black
vector is transported to the same point via
two different curves, yielding different re-
sults. The same phenomenon occurs for
other geometric objects, including filters.

Coordinate Independent Convolutional Networks--Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds,

Weiler, Forré, Verlinde, Welling, arXiv preprint arXiv:2106.06020 [cs.LG]

Gauge equivariant convolutional networks and the icosahedral CNN, Cohen, Weiler, Kicanaoglu, Welling

International conference on Machine learning, 1321-1330 [arXiv:1902.04615v3 [cs.LG]



More LFT applications of gauge equivariance

o lattice gauge equivariant convolutional neural networks,
Favoni, Ipp, Mueller, Schuh, Phys. Rev. Lett. 128 (2022) 3, arXiv:2012.12901 [hep-lat]

o gauge-equivariant pooling layers for preconditioners in lattice QCD
Lehner and Wettig, arXiv:2304.10438 [hep-lat]

v" active field, interesting cross-talk with other ML applications

v" requires “theoretical physicists/QFT experts” to master formalism

opportunity for LFT community to contribute to ML world



. Ve
Classification of phases of matter ///

o matter can exist in different phases
o prototype: 2d Ising model -> ordered/disordered or cold/hot phases
o task: determine phase a system is in, determine critical coupling or temperature

Published: 13 February 2017

Machine learning phases of matter

Juan Carrasquilla ™ & Roger G. Melko

Nature Physics 13, 431-434(2017) | Cite this article

Ordered -- ? -- Disordered



Phase classification: (by now) standard procedure

o use your favourite architecture, e.g. Convolutional Neural Network
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CONFIGURATION CONV+ReLU

* input: train on sets of configurations away from the transition

* output: assign probability to be in ordered or disordered phase
o standard supervised classification problem

o apply to unseen configurations and predict



What can we add?

o give a physical interpretation to neural network (NN) prediction
o interpret output from a NN as an observable in a statistical system
* input: configurations, distributed according to Boltzmann weight

* output: observable, “order parameter” in statistical system
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Extending machine learning classification capabilities with histogram reweighting,
Bachtis, Aarts, Lucini, Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]



Output of NN as physical observable

o once you accept this: opens up possibility to use “standard” numerical/statistical methods
mmm) histogram reweighting: extrapolation to other parameter values

o starting from computation at given f3: extrapolate to other [ values

- [ Reweight | ' Y
0.9 | Reweightin i
(CNN
0.8 | P © -
y pl.e—(ﬁ—ﬁo)Ei 0.7 F 0.18 -
< P> (,B) = A 06 017 K i
Z e_(.B_.Bo)Ei S 051 o016 - _
V. 0.4} 04355 0.4365 088 /74 4
/,
0.3 | 086 /& 4 A
0.2 | -
. . 0.4415 0.4425
v filled diamond at 3, 0.1 - -
v i . . . . 0 : ! ! !
line obtained by reweighting in 5 0.428  0.432  0.436  0.44 0444  0.448
v open diamonds are independent cross checks B

2d Ising model



6P

Critical behaviour from NN observables

* determine L dependent susceptibility 6P and its maximum at 5.(L)
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symmetry-broken symmetric
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Mapping distinct phase transitions to a neural network, Bachtis, Aarts, Lucini  (Binder cumulant, Susceptibi“ty)
Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]
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Example: Restricted Boltzmann Machine

Information forwarding & retrieval

¢i7 1€ (1’N1)) haa 4= (laNh>
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Visible Hidden

two-layer generative network

o visible layer: to encode probability distribution

o hidden layer: to encode correlations

o restricted: no connections within a layer

o degrees of freedom on two layers can be spins, say +1, or continuous, or mixed

1
o energy-based method: p(o,h) = Ee‘s(¢’h) 7 = /D¢Dh o= S(:h)



Scalar field RBM

o use field theory approach: start with “free fields”: Gaussian-Gaussian RBM

1

o distribution: p(o, h) = Ee_s(gb’h) 7 = /quDh o5 (9h)

LY. _ 1 99 1 2
o energy (oraction):  S(¢,h) = Zz: SHi P + Za: Tﬂ(h“ —Mg)” — ; O;w; Ry
O ho interaction between nodes in a layer, bilinear coupling between layers

o start with quadratic terms, add interactions later, e.g. ¢* terms



Gaussian scalar field RBM

o two Gaussian fields with bilinear coupling

S(¢7 h’) — Z %H?@Q + Z %ﬂ(ha - na)2 o Z ¢iwz’aha

o induced distribution on visible layer

p(¢) = /th(¢7 h) = %GXP —% Z ¢iKijop; + Z Jiti
ij i

o scalar field with kinetic (all-to-all) term K;; = ,ufdz-j — Zwmng
a

and source J, = Zwmna
a



Some results for N, = N,

explicit representations for the weight matrix W

1. K is symmetric, positive-definite: use Cholesky decomposition K = LL’
with L real lower triangular matrix with positive diagonal entries

hidden node a connects to visible nodes with i < a only

W =1L

2. K is symmetric, positive-definite: diagonalise using orthogonal transformation

K = 0DOT = OV DOTOVDOT S W =wT =0vDOT

3. non-uniqueness: internal symmetry W — WOpgr with OROg =1

leaves WW?' invariant, reshuffles hidden nodes ¢"Wh — ¢"WOgrh = ¢"WH



Some results for N, = N,

(infinitely) many solutions for weight matrix:

1. Cholesky decomposition K = LLY : W =L  triangular

2. diagonalisation K = ODOT = OVDOTOVDOT : W =WT = OV DO”

3. non-uniqueness: internal symmetry W — WOr => ¢ Wh — ¢’ WOrh = ¢' WH
in practice

o all equally valid, realisation depends on initialisation

o non-observable degeneracy due to internal symmetry on hidden layer



Result for N, < N,

o number of hidden nodes act as an ultraviolet regulator

o spectrum of induced quadratic operator on visible layer Z¢iKij¢j
ij
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o exact spectrum (k) reproduced by RBM (A) from smallest eigenvalue upwards

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



 applicable to typical ML
data sets, such as MNIST

* analyse RBM using language (a) N, =784 (b) Nj, = 225 (c) Nj, = 64
and intuition from LFT

* obtain some straightforward

but rigorous results

(d) N, = 36

* include interactions using statistical field theory methods, e.g. perturbation theory

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



Outlook

o inspiring connection between problems in lattice field theory and machine learning

o new solutions to old problems/old solutions to new problems

o insights work both ways: plenty of opportunities for impact in LFT and ML



