EXALAT Benchmarking

Ed Bennett

ExaTEPP Workshop, 2023-06-22

Group theory

e Gauge (gluon) fields are represented on the lattice by matrices, e.g.
e SU(N): complex, UTU = 1,detU =1
« SO(N):real,0T0 =1,det0 =1

« Sp(N): complex, UTU =1,detU =1, UTQU = Q (Q = (?1) g))

* Fermion (quark) fields represented by vectors acted on by some
representation of these
 Fundamental representation: N elements
* Higher representations (antisymmetric, adjoint, ...): M elements, M > N

Codes for Lattice QFT

HiRep Pica et al.
e Started ~2007

e C, with C++/Perl code generator

* Heavy use of preprocessor macros

e Support general SU(N), SO(N)
* Sp(2N) theories in fork, since 2018

e Supports general 2-index rep
 Historically CPU-only

Grid Boyle et al.

Started ~2013
C++

Heavy use of templating, expression
templates

Supports SU(N) (esp. SU(3))
e Sp(2N) theories in fork, since 2023

Supports general 2-index fermion
representation

e Bias towards fundamental rep

CPU (AVX2/512/QPX), GPU (CUDA,
HIP, SYCL)

Supercomputing Wales

SO VI BRERO Jarmo Rartaharit

* Benchmarks the CG inversion of the Dirac operator
* Primary consumer of FLOPs in production code
* Fixed iteration count

* Tests six different theories (varying gauge group, fermion rep)
* Changes the relative demands on on-node compute, inter-node comms

e Strips down HiRep
 Removes code generator

* Removes unused function
¢ <10k SLOC

e First version released 2018

S h O P | Ifte I Michele Mesiti, EXALAT

e Extracting by hand is time-consuming

* Instead, use pycparser to extract and prune call graph

* Automatically generate headers and remove any dead code
* Shoplifter then generates a packaged SOMBRERO

Grid benchmarks

e Extensive set of unit benchmarks built into Grid

 Dirac operator application (at various volumes, fermion formulations)
e Disk I/O
* Memory bandwidth

DIRAC Technical Commissioning et wesii e exausr

* DIRAC procured new systems in 2021
* Tursa: 112 nodes, 4 X A100 40GB, 4 X Infiniband HDR
« COSMAS: 360 nodes, 2 X AMD 7H12 + 1TB RAM
e DlalL3: 200 nodes, 2 X AMD 7742
* CSD3: 267 nodes, 2 X Intel Ice Lake + 10 nodes, 4 X A100 80GB

* Initial acceptance testing done by vendors + DIRAC RSE team
e 2 X committed performance achieved for Grid on Tursa

* Next: community tests software
 Aim: Test both SOMBRERO and Grid on Tursa, COSMAS, DlaL3

DiRAC Technical Commissioning: Approach

* Test all available compilers, MPIl implementations
* On 1 node; on many nodes

 Test scaling of best-performing setup
* Collate data from output files to create comparison plots

 Automate as much as possible
* Shell scripts, Jupyter notebooks

* Push all data and scripts to DiRAC Technical Commissioning repo

gflop/s

Comparing compilers for SOMBRERO

machine_name = cosma machine_name = csd3 machine_name = dial

14000 -
800 4 12000 A

600 A
400 ~

200 A

environment environment case

environment

Higher is better

mflop/s/node

omparing compilers for Grid

machine_name = cosma

250000 -

200000 -

150000 A

100000 A

50000 -

0 |
>y
B
L
Vd?
&
[O)

environment

Higher is better

500000 -

400000 -

300000 -

200000 -

100000 -

0.

machine_name = csd3-cpu

environment

machine_name = csd3-gpu

environment

300000 A

250000

200000 A

150000 A

100000 A

50000 -

machine_name = dial

» Q Q Q o "g
Q\@ Q\x"’ & Q\?’ & S
& & J° N (’p'\ ,1};\
< N Q < Q
S Q ~ b
o & & &
< &’ S &
< o &
N <
environment
nnodes
B}
16
Il 64

gflop/s

gflop/s

gflop/s

Scaling for SOMBRERO

case = 1 | machine_name = cosma case = 1 | machine_name = csd3 case = 1 | machine_name = dial
10000 -
* +
5000 - +
+
+ + .8 + o4
+ + C o
04wt {
case = 2 | machine_name = cosma case = 2 | machine_name = csd3 case = 2 | machine_name = dial
10000 -
+ +
5000 - " . +
s
+ * + * * ¥ + +
+ . +
01#" it
case = 3 | machine_name = cosma case = 3 | machine_name = csd3 case = 3 | machine_name = dial
10000 -
+
+
5000 - +
+
+ + + C .
+ &+ + n® + +
0 =t [T Fas
0 20 40 60 0 20 40 60 0 20 40 60
nnodes nnodes nnodes

Higher is better; flat = no improvement

L IR N

gflop/s

gflop/s

gflop/s

ppn
48
64
72
128

10000 +

5000 -

10000 A

5000 -

10000 +

5000 -

case = 4 | machine_name = cosma case = 4 | machine_name = csd3 case = 4 | machine_name = dial
+
+
w
+ 7 + & + 7t
+
it it
T T T T T T T T T T
case = 5 | machine_name = cosma case = 5 | machine_name = csd3 case = 5 | machine_name = dial
+
+
+ g
+F + e s F +
e e
T T T T T T T T T T
case = 6 | machine_name = cosma case = 6 | machine_name = csd3 case = 6 | machine_name = dial
4+
+
+
5
+ +
+ +
+
*{-I‘-" i +_;++
T T T T T T T T T T T
0 20 40 0 20 40 60 0 20 40 60
nnodes nnodes nnodes

Scaling for Grid

L I 4
S w

machine_name = cosma machine_name = csd3-cpu 1le7 machine_name = csd3-gpu machine_name = dial
x 144
600000 - 600000 - 600000 -
124 ©
x
x
500000 - 5000001 © 500000 -
x 1.0 A
@
4 4 ® 4
'§ 400000 400000 N ° 0.8 - 400000
- °
g
5 300000 - 300000 - ° 0.6 - 300000 % e
1S % o .
° .
200000 - ° ® 200000 - 0.4 200000 -
°
°
x
100000 - 100000 - 0.2 ° x 100000 -
° x x
° °
0 T T T T T T 0 T T T T T T T T 0.0 T T T T T T T T 0 T T T T
0 10 20 30 40 50 60 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 10 20 30 40
nnodes nnodes nnodes nnodes

Higher is better; flat = perfect scaling

ExCALIBUR Benchmarking Michele Mesit, EXALAT

* Quasi-automated benchmarking
Suite based On SpaCk and excalibur-tests / benchmarks / apps / sombrero/ (0 Add file <

R F G giordano Split Myriad partitions into CPU-only and GPU (#164) em 8ba0bb9 - 2 weeks ago {X) History
Name Last commit message Last commit da...
L] L]
* SOMBRERO adapted into this
[README.md Shorten top dir name to benchmarks 3 months ago
fra m eWO r k [9 case_filter.py Shorten top dir name to benchmarks 3 months ago
[sombrero.py Split Myriad partitions into CPU-only and GPU (#164) 2 weeks ago
README.md Z

SOMBERO

SOMBRERO is a benchmarking utility for high performance computing based on lattice field theory applications.

SOMBRERO is composed of 6 similar benchmarks that are based on different lattice field theories, each one with a
different arithmetic intensity and a different compute/communication balance. Each benchmark consists of a fixed
number (50) of iterations of the Conjugate Gradient algorithm, using the underlying Lattice Dirac operator built in
the relative theory.

Continuous Benchmark Andy Sunderland, EXALAT

Sombrero Timings Archer 2
Cray Compiler: -std=c99 -Ofast

1000

900 m Small - Case 3
800 B Medium - Case 3

M Large - Case 3

700

600

500

Gflops/secs

400

300

200

1x1 1x4 1x8 1x16 1x32 1x64 1x128 2x128 4x128 8x128
Number of Nodes x MPI Tasks

Other outcomes

e Lattice benchmarks (SOMBRERO and predecessors + Grid) have also
* |dentified performance issues on new machine setups
* |dentified compiler bugs on new architectures
* Contributed to procurement decisions and acceptance tests
* Been used by vendors internally

Tasks for ExaTEPP

* HiRep development has moved on
* CUDA branch under active development
* Shoplifter no longer compatible; needs updating
e Upcoming DIiRAC uplift
* Repeat previous technical commissioning exercise
* |deally now with SOMBRERO on GPU as well

e ExXCALIBUR test beds

e Some are compatible with Grid and/or HiRep, so want benchmarking

