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Group theory

e Gauge (gluon) fields are represented on the lattice by matrices, e.g.
e SU(N): complex, UTU = 1,detU =1
« SO(N):real,0T0 =1,det0 =1

« Sp(N): complex, UTU =1,detU =1, UTQU = Q (Q = (?1) g))

* Fermion (quark) fields represented by vectors acted on by some
representation of these
 Fundamental representation: N elements
* Higher representations (antisymmetric, adjoint, ...): M elements, M > N



Codes for Lattice QFT

HiRep Pica et al.
e Started ~2007

e C, with C++/Perl code generator

* Heavy use of preprocessor macros

e Support general SU(N), SO(N)
* Sp(2N) theories in fork, since 2018

e Supports general 2-index rep
 Historically CPU-only

Grid Boyle et al.

Started ~2013
C++

Heavy use of templating, expression
templates

Supports SU(N) (esp. SU(3))
e Sp(2N) theories in fork, since 2023

Supports general 2-index fermion
representation

e Bias towards fundamental rep

CPU (AVX2/512/QPX), GPU (CUDA,
HIP, SYCL)



Supercomputing Wales

SO VI BRERO Jarmo Rartaharit

* Benchmarks the CG inversion of the Dirac operator
* Primary consumer of FLOPs in production code
* Fixed iteration count

* Tests six different theories (varying gauge group, fermion rep)
* Changes the relative demands on on-node compute, inter-node comms

e Strips down HiRep
 Removes code generator

* Removes unused function
¢ <10k SLOC

e First version released 2018



S h O P | Ifte I Michele Mesiti, EXALAT

e Extracting by hand is time-consuming

* Instead, use pycparser to extract and prune call graph

* Automatically generate headers and remove any dead code
* Shoplifter then generates a packaged SOMBRERO



Grid benchmarks

e Extensive set of unit benchmarks built into Grid

 Dirac operator application (at various volumes, fermion formulations)
e Disk I/O
* Memory bandwidth



DIRAC Technical Commissioning et wesii e exausr

* DIRAC procured new systems in 2021
* Tursa: 112 nodes, 4 X A100 40GB, 4 X Infiniband HDR
« COSMAS: 360 nodes, 2 X AMD 7H12 + 1TB RAM
e DlalL3: 200 nodes, 2 X AMD 7742
* CSD3: 267 nodes, 2 X Intel Ice Lake + 10 nodes, 4 X A100 80GB

* Initial acceptance testing done by vendors + DIRAC RSE team
e 2 X committed performance achieved for Grid on Tursa

* Next: community tests software
 Aim: Test both SOMBRERO and Grid on Tursa, COSMAS, DlaL3



DiRAC Technical Commissioning: Approach

* Test all available compilers, MPIl implementations
* On 1 node; on many nodes

 Test scaling of best-performing setup
* Collate data from output files to create comparison plots

 Automate as much as possible
* Shell scripts, Jupyter notebooks

* Push all data and scripts to DiRAC Technical Commissioning repo



gflop/s

Comparing compilers for SOMBRERO
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mflop/s/node

omparing compilers for Grid
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Scaling for SOMBRERO
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Scaling for Grid
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ExCALIBUR Benchmarking Michele Mesit, EXALAT

* Quasi-automated benchmarking
Suite based On SpaCk and excalibur-tests / benchmarks / apps / sombrero/ (0 Add file <

R F G giordano Split Myriad partitions into CPU-only and GPU (#164) em 8ba0bb9 - 2 weeks ago  {X) History
Name Last commit message Last commit da...
L] L]
* SOMBRERO adapted into this
[ README.md Shorten top dir name to benchmarks 3 months ago
fra m eWO r k [9 case_filter.py Shorten top dir name to benchmarks 3 months ago
[ sombrero.py Split Myriad partitions into CPU-only and GPU (#164) 2 weeks ago
README.md Z

SOMBERO

SOMBRERO is a benchmarking utility for high performance computing based on lattice field theory applications.

SOMBRERO is composed of 6 similar benchmarks that are based on different lattice field theories, each one with a
different arithmetic intensity and a different compute/communication balance. Each benchmark consists of a fixed
number (50) of iterations of the Conjugate Gradient algorithm, using the underlying Lattice Dirac operator built in
the relative theory.



Continuous Benchmark Andy Sunderland, EXALAT

Sombrero Timings Archer 2
Cray Compiler: -std=c99 -Ofast
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Other outcomes

e Lattice benchmarks (SOMBRERO and predecessors + Grid) have also
* |dentified performance issues on new machine setups
* |dentified compiler bugs on new architectures
* Contributed to procurement decisions and acceptance tests
* Been used by vendors internally



Tasks for ExaTEPP

* HiRep development has moved on
* CUDA branch under active development
* Shoplifter no longer compatible; needs updating
e Upcoming DIiRAC uplift
* Repeat previous technical commissioning exercise
* |deally now with SOMBRERO on GPU as well

e ExXCALIBUR test beds

e Some are compatible with Grid and/or HiRep, so want benchmarking



