

DI PAVIA

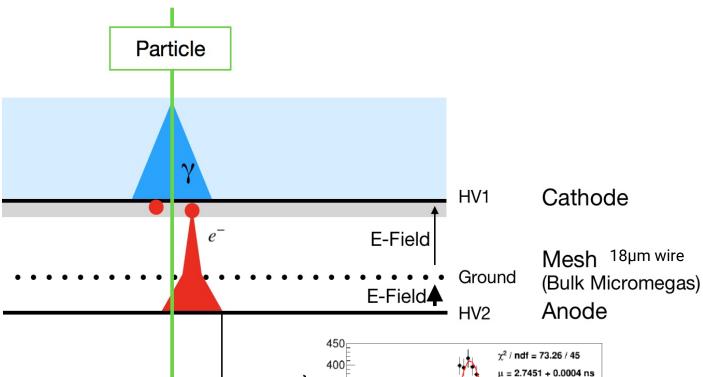
Sezione di Pavia

Picosec Micromegas performance on muon beam with eco-friendly gas mixtures

<u>D.Fiorina</u> – C.Aime – I.Vai – S.Calzaferri C.Riccardi – P.Salvini – P.Vitulo – A.Braghieri

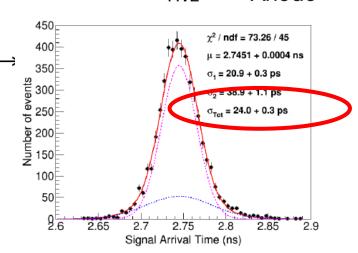
INFN & Università Pavia

Picosec Concept


Gas Mixture:

Ne/C₂H₆/CF₄ 80/10/10

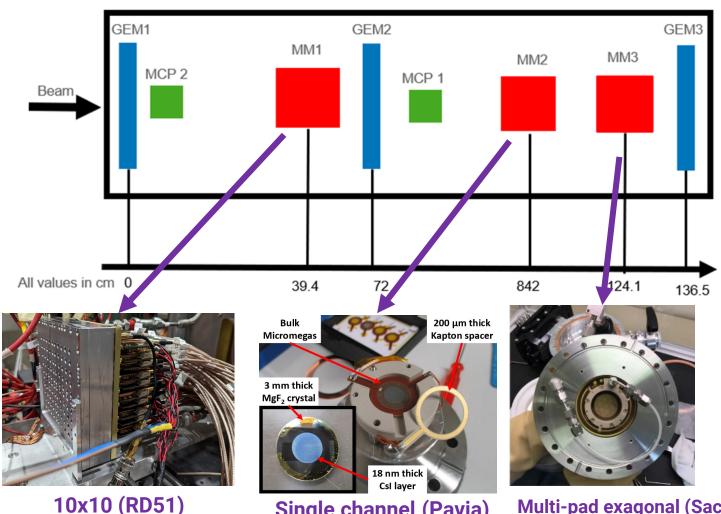
Field(kV/cm)	Gain
~40	~10³
~20	~10²


Cherenkov MgF2 3mm Radiator

Photocathode Csl 18nm Drift 200µm Amplification 128µm

- 1. Look at Cherenkov, not the ionisation
 Photo-electrons created promptly with the MIP passage
- 2. Remove the drift gap and start the avalanche as soon as possible Avalanche propagate faster

Bortfeldt, J., et al. "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 903 (2018): 317-325.



Test Beam Setup

MCP for time reference σ₁≈5ps

Single channel (Pavia)

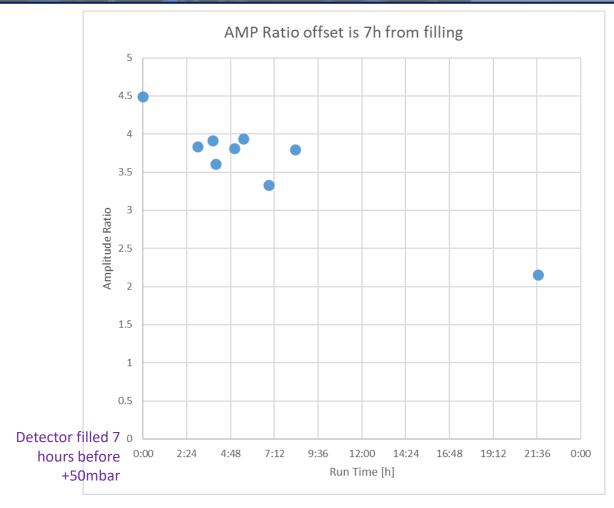
Test beam in CERN EHN1 26Apr-10May 2023

Shared infrastructure during RD51 test beam

Pavia Single-channel:

- Operation with eco-friendly gas
- Operation with resistive photocathode (B4C)
- Operation in pion beam (≈1MHz/cm²)
- Operation with reduced preamplification gap

Multi-pad exagonal (Saclay)

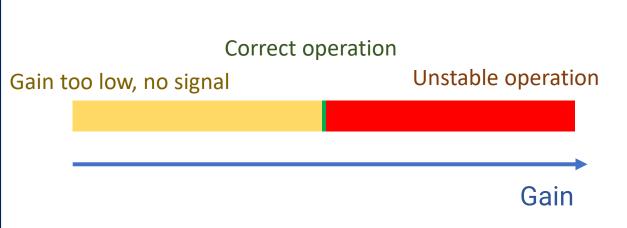


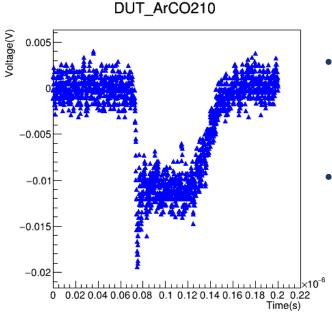
Eco-friendly gas operation

Gas mixture used	Global Warning Potential 20-years (normalized to CO_2)
Ne/C ₂ H ₆ /CF ₄ (80/10/10)	441
Ne/iC ₄ H ₁₀ (94/6)	0.2
Ar/CO ₂ (93/7)	0.07
Ar/CO ₂ /iC ₄ H ₁₀ (93/5/2)	0.11

- Nominal mixture has a non-negligible GWP mostly because of CF₄
- Moreover, with current and future regulations,
 CF4 usage will be heavily discouraged
- Remove CF₄ or substitute it

Gas quality degradation during test beam in sealed mode


Eco-friendly gas operation


-Ar based mixtures-

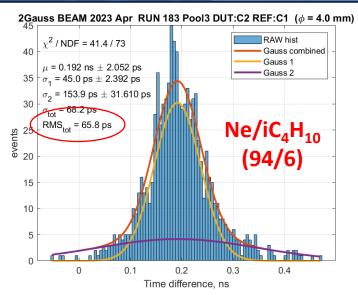
Gas mixture used	Global Warning Potential 20-years (normalized to CO_2)
Ne/C ₂ H ₆ /CF ₄ (80/10/10) -standard-	441
Ne/iC ₄ H ₁₀ (94/6)	0.2
Ar/CO ₂ (93/7)	0.07
Ar/CO ₂ /iC ₄ H ₁₀ (93/5/2)	0.11

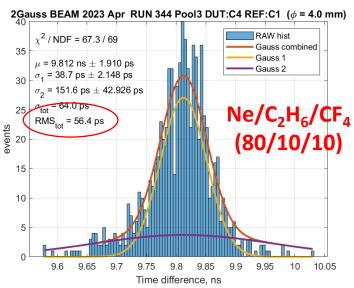
- MIPs signal is on the order of several photoelectrons (depending on photocathode)
- We failed to find a suitable working point for such mixtures
- Immediate passage between np-signal region to spark region
- Such mixtures are not quenched enough to control the avalanche
- (more quencher needed)

- We can see singlephotoelectron signals in the lab
- Unstable detector (Sparks)

Eco-friendly gas operation

-Ne based mixtures-


Gas mixture used	Global Warning Potential 20-years (normalized to ${\sf CO_2}$)
Ne/C ₂ H ₆ /CF ₄ (80/10/10) -standard-	441
Ne/iC ₄ H ₁₀ (94/6)	0.2
Ar/CO ₂ (93/7)	0.07
Ar/CO ₂ /iC ₄ H ₁₀ (93/5/2)	0.11


Correct operation

Gain too low, no signal

Unstable operation

- Photocathode used was B4C
 6nm
 - Photoelectron yield is around 3 PE/MIP
 - Lower time resolution wrt Csl is expected (with Csl ≈25ps)
- Time difference distribution between Picosec and reference MCP
- The two distributions are measured at similar gains for the two mixture
- The impact of CF_4 in timing is visible but not drastic ($\approx 15\%$)
- Gain Still, the 3-component gas mixture has a wider operational range because is more quenched

Conclusions

- April/May test beam was successful, and many data was collected
 - Operation with eco-friendly gas
 - Operation with resistive photocathode (B4C)
 - Operation in pion beam (≈1MHz/cm²)
 - Operation with reduced preamplification gap
- We demonstrated that acceptable timing performance might also be achieved without CF₄ (≈15% lower time resolution)
- Future tests will exploit **different gas concentrations** and the possibility of using a **CF**₄ **substitute** (like R1234ze already tested among the RPC community)

These early results on gas mixture will be presented at the FAST2023 conference (28 May 2023 to 1 June) along with the results of previous test beams.