Towards identifying the sources of Ultra-High Energy Cosmic Rays with the GRAND experiment

Lech Wiktor Piotrowski

University of Warsaw

HEP seminar, 19.V.2023

Lech Wiktor Piotrowski

Towards UHECR sources with GRAND

19.V.2023

- 2 The GRAND idea
- GRAND technical challenges
- Existing GRAND prototypes
- 5 The Polish group

Cosmic rays spectrum

Main UHECR questions:

- Sources
- Composition
- Spectrum

A. di Matteo et al., ICRC 2019

4/35

 Bottom-up scenarios – acceleration in electromagnetic fields

- Bottom-up scenarios acceleration in electromagnetic fields
- Top-down scenarios
 - Super-heavy Dark Matter mass $>10^{21}$ eV, decays to UHECR/UHE ν /UHE γ

- Bottom-up scenarios acceleration in electromagnetic fields
- Top-down scenarios
 - Super-heavy Dark Matter mass $>10^{21}$ eV, decays to UHECR/UHE ν /UHE γ
 - Topological defects decays to super-heavy particles which decay to UHECR/UHE $\nu/{\rm UHE}\gamma$

- Bottom-up scenarios acceleration in electromagnetic fields
- Top-down scenarios
 - Super-heavy Dark Matter mass $>10^{21}$ eV, decays to UHECR/UHE ν /UHE γ
 - Topological defects decays to super-heavy particles which decay to UHECR/UHE $\nu/{\rm UHE}\gamma$
- Limits on UHE gammas and neutrinos strongly favour bottom-up scenarios as the main source of UHECR

Extensive Air Shower

Cascade of secondary particles (EAS) produces UV radiation (excited nitrogen fluorescence), Cherenkov radiation and... radio waves

Lech Wiktor Piotrowski

Towards UHECR sources with GRAND

0/0

What do we try to measure/estimate?

- $\bullet\,$ EAS axis direction \rightarrow incoming direction of the primary particle
- EAS energy \rightarrow primary particle's energy
- $\bullet\,$ EAS Xmax distance to where the number of secondaries was maximal $\rightarrow\,$ mass and thus type of incoming particle

What these observables tell us?

- Direction possible astrophysical source identification
- Energy and Xmax physical mechanism of acceleration / astrophysical source type

Direct detection of secondary particles

- Secondary particles reaching the ground: muons (>50%), electrons, gammas, positrons, neutrinos...
- Surface detectors detecting them through direct interaction

Auger surface detector: a water cherenkov tank

Telescope Array surface detector: a plastic scintillator

- Secondaries excite atmospheric nitrogen
- Nitrogen emits isotropic light mostly in near-UV (\sim 320, 340, 360 nm)
- An EAS travelling through the sky is seen by telescopes from the side

Auger fluorescence telescope

Telescope Array fluorescence telescope

- A cone of 300-1000 nm light is produced along the EAS axis
- Can be detected by a fast (\sim 10 ns res.) telescope
- $\bullet\,$ Cone diameter is $\sim 120\,$ m on the ground not feasible for on-ground in-air detection
- Could be detected from space
 - Direct Cherenkov for Earth-skimming neutrinos induced EAS (upward-going). Cone much bigger due to distance and thin air.
 - Reflected Cherenkov from downward going EAS, scattered light
- The main method for detection of neutrinos in ice and water

IceCube's PhotoMultiplier Tube

Radio emission from EAS

- **Geomagnetic:** Main contribution from electric current perpendicular to the EAS axis from separations of e^+ and e^- by geomagnetic field
- Askaryan / charge excess: \sim 10% contribution from excess of e^- in the EAS front due to e^+ annihilation
- In both cases we have an "electrical current" generating a $~\sim$ 10 ns radio pulse
- "Cherenkov"-like effects: radio pulse is compressed due to varying refractive index of air

Radio emission from EAS

- **Geomagnetic:** Main contribution from electric current perpendicular to the EAS axis from separations of e^+ and e^- by geomagnetic field
- Askaryan / charge excess: \sim 10% contribution from excess of e^- in the EAS front due to e^+ annihilation
- In both cases we have an "electrical current" generating a $~\sim$ 10 ns radio pulse
- "Cherenkov"-like effects: radio pulse is compressed due to varying refractive index of air
- The radio waves can be detected by simple radio antennas

AERA antenna (AUGER)

LOFAR antenna

How to find UHECRs sources?

Not much closer to detecting sources in 4 years...

How to find UHECRs sources?

...and that despite huge covered areas

Solutions

- Increase the atmosphere coverage
 - Use a different experimental idea (eg. observations from the orbit with JEM-EUSO/Poemma)
 - Use different (more efficient and cheaper) detection methods to cover more ground
- Reduce the angular uncertainty
 - $\bullet\,$ Observe UHE neutrinos from UHECR ($\sim5\%$ of the primary energy) that travel in straight line from the source

Giant Radio Array for Neutrino Detection – GRAND – aims at both increasing the atmoshpere coverage and observing the UHE neutrinos

Radio detection of ultra-high-energy air-showers in GRAND

Lech Wiktor Piotrowski

Towards UHECR sources with GRAND

19.V.2023

- ✓ Radio environment: radio quiet
- ✓ Topography: mountains/slopes
- $\checkmark\,$ Access, Installation and Maintenance
- ✓ Other issues (e.g., political)

several excellent sites identified in Argentina & China (~100 measurements,14 campaigns)

slide by Kumiko Kotega

19.V.2023

GRAND spectral range

Simulated performances

GRAND Science & Design, GRAND Coll.

Science China arViv:1910 00004

- GRAND full sensitivity to neutrinos (E>10¹⁷ eV) \sim 4 x 10⁻¹⁰ GeV cm⁻² s⁻¹ sr⁻¹
- Angular resolution ~0.1° for GP300 & GRAND
- Energy resolution < 10% on air-showers for GP300 & GRAND
- X_{max} resolution < 40 g/cm² for E>10¹⁷ eV (comparable to other methods)

Decoene et al., 2022

B. Lago & Rio GRAND team

Decoene et al., 2022

slide by Kumiko Koto

Visibility for 1 sub-array (10,000 antennas) @ 43°N 1 h 24 h

- 80% full sky coverage in 24 h for GRAND10k
- $\bullet~107,000~{\rm km^2}$ sr exposure per year above 1 EeV for GRAND200k

The angular resolution is key for multi-messenger networks

- development of MM-networks, of EM instruments —> false associations will be extremely common
- skim interesting events + narrow down search area
 > requires angular resolution

20	21	2025	>2030	Diff. sens. lim. in GeV cm ⁻² s ⁻¹ sr ⁻¹	iFoV in sky %	ang. res.
		PUEO		4.2×10 ⁻⁸ in 30 d	6	$< 2.8^{\circ}$
	ARA			$3.6 \times 10^{-9} (2030)$	35	5°
	RNO-G			1×10 ⁻⁸ in 5 yr	30	$2^{\circ} \times 10^{\circ}$
	ARIANNA-200			8×10 ⁻⁹ in 5 yr	50	$2.9 - 3.8^{\circ}$
		RET-	N	3×10 ⁻¹⁰ in 5 yr	50	?
		IceCube-G	en2 Rad <mark>io</mark>	4×10 ⁻¹⁰ in 5 yr	43	$2^{\circ} \times 10^{\circ}$
	BEACON			1.2×10 ⁻⁸ in 5 yr	6	$0.3^{\circ} - 1^{\circ}$
		GRAND10k		1×10 ⁻⁸ in 5 yr	6	0.1°
			GRAND	4×10 ⁻¹⁰ in 5 yr	45	0.1°
	Auger			$[1.5 \times 10^{-8} (2019)]$	30	<1°
		TAMBO)	?	27	1°
	POEMMA Cerenkov		7×10 ^{−8} in 5 yr	0.6	0.4°	
			Trinity	1×10 ⁻¹⁰ in 5 yr	6	$<1^{\circ}$
		A	shra-NTA	2×10^{-10} in 5 yr	30	0.1°

adapted from Guépin, KK, Oikonomou, Nature Phys. Rev. 2022

202	21	2025	i >	2030	FoV	ang. res.	
	I HA	450			2	0.2*	
		C	тл		10-20°	< 0.15°	
	ΗΔΜ	ic C			2 sr	0.15	
	HESS				5°	0.1*	
e	MAGIC				3.5°	0.07*	
E	VERITAS				3.5*	0.1*	
ga	Fermi LAT				2.4 sr	0.15*	
	GBM				9 sr	10°	
	INTE	GRAL	IBIS		64 deg^2	0.2°	
			SPI-ACS		4π	-	
~	XWV	XMM-Newton			0.5°	6"	
^			Athena	-WFI	0.4 deg^2	< 5*	
	Swift	BAT			1.4 sr	0.4°	
		XRT			0.1 deg^2	18"	
Ŧ		UVC)T		0.1 deg^2	2.5"	
Ē		SVOM	ECLAIF	s	2 sr	$< 0.2^{\circ}$	
			MXT		1 deg ²	13"	
			VT		0.2 deg^2	< 1*	
	ASA	S-SN			72 deg^2	7.8"	
	ATL	AS			29 deg^2	2"	
	Pan-STARRS				14 deg^2	1.0 - 1.3"	
3	ZTE				47 deg^2	2"	
-a	Vera Rubin Obs. (LSST)			9.6 deg^2	0.7*		
ptic	MASTER-II(VWF)			- í	8(400) deg ²	1.9" (22")	
°~	TAROT				4 deg^2	3.5"	
=	GEMINI (GMOS)				30.23'2	0.07*/pix	
	GTC (OSIRIS)				0.02 deg^2	0.127"/pix	
	Keck (LRIS)				46.8'2	0.135"/pix	
	VLT (X-shooter)				2.2'2	0.173"/pix	
.0					0.16 deg ²	0.12*	
rad	MWA			610 deg2	0.9'		
	SKA1(2)-MID				1(10) deg ²	0.04°-0.7°	

slide by Kumiko Kotera

Detection of neutrinos from point sources

- GRAND10k have a chance to detect ν from pulsars after 3 years
- GRAND200k should see ν from clusters, AGNs and some GRBs
- Achievable with 100s of events and $\sim 0.3^\circ$ angular resolution
- Pessimistic cosmogenic ν scenarios help point sources' detection (lower background)

GRAND science case

- UHE neutrinos
 - point sources
 - cosmogenic flux
- UHECR
 - 20 times the exposure of Auger
 - 1 yr: GRAND 6400, Auger 320 events $> 10^{19.5}$ eV, GRAND 150, Auger 8 events $> 10^{20}$ eV
 - transition from galactic to extragalactic, north-south anisotropy
 - hadronic physics
- neutrino physics (cross-sections, flavour ratios)
- UHE gamma-rays observations/competitive limits
- Radio astronomy
 - almost full-sky survey
 - FRBs and Giant Pulses

10/33

A staged approach with self-standing pathfinders

	Prototyping	GRAND10k	GRAND200k		
	2023 20)25	203X		
	autonomous radio detection of very inclined air-showers	1st GRAND sub-arrays (x2)	sensitive all-sky detector		
Goals	cosmic rays 10 ^{16.5-18} eV •Galactic/extragalactic transition •muon problem •radio transients	 discovery of EeV neutrinos for optimistic fluxes radio transients (FRBs!) 	1st EeV neutrino detection and/or neutrino astronomy!		
Setup	 GRAND@Nançay: 4 antennas for trigger testing GRAND@Auger: 10 antennas for cross-calibration GRANDProto300: 300 HorizonAntennas over 200 km² 	• 10,000 radio antennas over 10,000 km²	 200,000 antennas over 200,000 km² 20 sub-arrays of 10k antennas on different continents 		
Budget	2 M€ 100 antennas produced funded by China + ANR PRCI NUTRIG (France) + Radboud University	13 M€ 1500€/unit	300M€ in total _{500€/unit} to be divided between participating countries		
	Lech Wiktor Piotrowski	Towards LIHECR sources with GRAND			

Status for existing experiments:

- Antarctic (super low-noise) experiments, like ANITA, trigger on radio signal
- All non-antarctic experimens (AERA, LOFAR, etc.) are externally triggered (particle detectors)
- But past TREND experiment (a precursor to GRAND) managed to register UHECR with a radio trigger
- To trigger on radio signal, we need:
 - Very radio-quiet environment
 - Optimised antennas
 - $\bullet\,$ Electronics and software capable of 10^8 rejection rate
 - Motivation we can not do it differently

TREND showed that it can be done, GRAND needs to (vastly) optimise it

How to find primary particle's direction, energy and mass (Xmax)?

- Mature methods for radio for... vertical showers
- Current experiments' sensitivity to very inclined shower is very low
- For very inclined showers terra incognita, but we can start with same methods, and add "our" features

- Strong, accessible Cherenkov-like ring in our frequency range
- \bullet Assymetric atmosphere for the shower \rightarrow synchrotron effect \rightarrow cloverleaf pattern
- Still studied in simulations

- How to deploy 200,000 antennas
- How to put them on slopes
- Power/connectivity
- How to maintain a huge site
- Finding sites
- Financing...

Hardware

100 detector units ready for deployment:

- A butterfly antenna
 - 3 arms: x,y: 2×65 cm, z: 65 cm
 - On a 3.5 m pole

5 detection units tests at Xi'An (by Zheng PengFei)

19.V.2023

Hardware

100 detector units ready for deployment:

- A butterfly antenna
 - 3 arms: x,y: 2×65 cm, z: 65 cm
 - On a 3.5 m pole
- Front-end electronic:
 - 30-230 MHz analogue filtering (to be used: 50-200 MHz)
 - 500 MS/s digitisation
 - Xilinx Zync MPSoC (FPGA+2 CPUs+2 RT CPUs)
 - Bullet WiFi data transfer

GRAND: software/simulations/other status

Software

Data format:

- Idea: raw/sim → ROOT TTrees
- Status: in validation for raw data and ZHAireS, in preparation for CoREAS

Data analysis:

- GRANDlib Python + C(++) speedups/alternatives
- Status:
 - Preliminary energy reconstruction with GRANDlib and CoREAS working
 - Own topography module
 - GRANDlib enhancements in progress (electronic chain simulation, reconstruction, etc.)

Other

Carbon footprint:

- Estimated in 10.1016/j.astropartphys.2021.102587
- GRAND Green Policy validated

Simulations

ZHAireS:

Migration to ZHAireS 1.0.30a on Aires 19.04.06 now
 For big studies, interpolation used (*M. Tueros and A. Zilles 2021 JINST 16 P02031*)
 ZHAireS 1.1 in progress → more accurate description of the

atmosphere using GDAS

CORSIKA7/CoREAS:

 Generated big library of inclined showers
 Up-going showers handling in progress (Chao Zhang et al., PoS(ICRC2021)248)

Radio-morphing:

(A. Zilles et al., 10.1016/j.astropartphys.2019.06.001)
 Good agreement with microscopic simulations
 New scaling laws and new interpolation → better accuracy of the peak time and amplitude of the interpolated pulse (Chiche et al., PoSI(CRC2021)194)

MGMR3D:

(O. Scholten et al., Phys. Rev. D 97, 023005) • Some effort on adaptation from LOFAR to GRAND

- 13 antennas deployed on private land in Xiao Dushan 3 months ago (by Xidian University and Purple Mountain Observatory)
- No remote access possible (because the site is remote)

- 13 antennas deployed on private land in Xiao Dushan 3 months ago (by Xidian University and Purple Mountain Observatory)
- No remote access possible (because the site is remote)
- Hardware, triggering and EAS reconstruction (too small to do science though)

- 13 antennas deployed on private land in Xiao Dushan 3 months ago (by Xidian University and Purple Mountain Observatory)
- No remote access possible (because the site is remote)
- Hardware, triggering and EAS reconstruction (too small to do science though)
- Main, quickly identified issues:
 - Boards overheating
 - Incoherent LNA gains

- 13 antennas deployed on private land in Xiao Dushan 3 months ago (by Xidian University and Purple Mountain Observatory)
- No remote access possible (because the site is remote)
- Hardware, triggering and EAS reconstruction (too small to do science though)
- Main, quickly identified issues:
 - Boards overheating
 - Incoherent LNA gains
- Cooling and new LNAs being installed now

19.V.2023

GRAND@Auger

- 4 antennas at the Auger site in Malargue, Argentina (by Radboud University and Univeridad Federal do Rio de Janeiro)
- Attached to AERA infrastructure
- Hardware tests, cross calibration with Auger
- Data transfer and remote access possible through 4G

• 4 antennas deployed in Nancay Radio Observatory, France

- 4 antennas deployed in Nancay Radio Observatory, France
- Easy access (for Europeans)

Towards UHECR sources with GRAND

- 4 antennas deployed in Nancay Radio Observatory, France
- Easy access (for Europeans)
- Hardware tests only with easy access, too noisy for EAS

- 4 antennas deployed in Nancay Radio Observatory, France
- Easy access (for Europeans)
- Hardware tests only with easy access, too noisy for EAS
- Working on reducing EM noise

We are aiming to have 300 antennas deployed in 2024:

- In a hexagonal pattern with a 850 m side
- Over 200 km²
- With a denser infill of 100 antennas to decrease the energy threshold
- In Gobi desert, Gansu province, China
- First 80 units still in 2023, hopefully

Goals:

- Large scale hardware test
- Autonomous level1 triggering
- Collection of events & bg for level2 design
- Inclined EAS reconstruction
- UHECR comparison with known results
- $\bullet\,$ But also valuable new UHECR & UHE $\gamma\,$ results

• GP300 will fill the instrumental gap in $10^{16.5} - 10^{18}$ eV range

19.V.2023

- GP300 will fill the instrumental gap in $10^{16.5} 10^{18}$ eV range
- Discover/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)

- GP300 will fill the instrumental gap in $10^{16.5} 10^{18}$ eV range
- Discover/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)
- With muon detectors:
 - study of transition between the Galactic and extra-galactic cosmic rays

- GP300 will fill the instrumental gap in $10^{16.5} 10^{18}$ eV range
- Discover/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)
- With muon detectors:
 - study of transition between the Galactic and extra-galactic cosmic rays
 - detection/limits on UHE gamma rays

19.V.2023

- GP300 will fill the instrumental gap in $10^{16.5} 10^{18}$ eV range
- Discover/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)
- With muon detectors:
 - study of transition between the Galactic and extra-galactic cosmic rays
 - detection/limits on UHE gamma rays
- Radioastronomy: FRBs, giant pulses

GRAND Today

• Recently joined by Greece

• Memorandum of Understanding signed by 12 parties, including UW

University of Warsaw, Faculty of Physics

- Lech Wiktor Piotrowski (PI)
- Pragati Mitra
- Szymon Sławiński (Master's Student)

- Data format definition and coding
 - Need to store ADC counts, Voltage, Efield, at different levels of processing
 - A ROOT based format with 11 ROOT TTrees
 - Conversion from hardware binary blob to TTrees
 - Conversion from simulators' data to TTrees (almost done)
- Inerfaces to data
 - Most people code in Python
 - Most people don't want to use ROOT directly
 - $\bullet\,$ Python classes for i/o of TTrees \rightarrow pure pythonic (no ROOT) syntax
 - An analysis oriented "Event" class that reads/writes data from/to multiple trees automatically
- A "clean", simulated Efield to ADC counts conversion chain

https://github.com/grand-mother

Our contributions: Offline signal identification

- GRANDProto300 will collect a lot of false events for study
- We need to find UHECR among them, offline
- Template matching algorithm based on simulations prepared and tested
- CNN based one class classifier in plans

Our contributions: Xmax reconstruction

- Available data:
 - Time tracers (signal vs time) of pulses for each antenna
 - Spectrum (FFT) of a pulse for each antenna
- Conventional:
 - Parametrize spectrum slope vs antenna position
 - Parametrize the above vs xmax
- Machine learning:
 - Feed integrated pulses, spectra slopes and antenna positions to decision trees

Possible collaborations with GRAND

- Data analysis preparation
 - Development of data analysis pipeline
 - Signal treatment trigger
 - Methods and tools for air-shower parameter reconstruction
- Scintillators on GRANDProto300?
 - Development and installation of particle detectors
 - Testing coincident events
 - Drastically improved science case (muon discrepancy, UHE rays)
- GRAND10k R&D
 - Optimisation of mechanical design
 - Optimisation of power management
 - Optimisation of communications & trigger
- Developing multi-messenger analysis in GRAND
 - Messenger discrimination
 - Developing the alert system
 - Synergies with other instruments: TA, CTA, ALPACA, Tibet AS , ASHRA

Summary

The origin of cosmic rays of highest energies still remains a mystery

- Current on-ground experiments (Auger, TA) have small chances of finding it
- GRAND aims to solve it with:
 - A huge exposure (20 times that of Auger in UHECR)
 - covering vast amounts of ground with cheap, low-density radio antennas
 - observing very inclined EAS
 - Detection of UHE neutrinos, vastly reducing direction uncertainty

GRAND status:

- 3 small prototypes started data gathering recently
- With luck, 80 antennas of the GRANDProto300 still this year \leftarrow UHECR science in $10^{16.5}-10^{18}$ eV region
- $\bullet\,$ With 10,000 antennas in \sim 2025 a chance for first UHE neutrinos discovery
- With 200,000 antennas in 2030's a chance for UHE neutrinos astronomy
- GRAND appears in several roadmaps (APPEC, Snowmass 2022, ESPP 2020, etc.)

More details about the analysis in GRAND during HEP seminar by Pragati Mitra on 16.06.2023.

It is very exciting time with GRAND prototypes collecting first data!

You are most welcome to join the Polish GRAND group!

http://grand-observatory.org

Towards UHECR sources with GRAND

Antenna:

- Radiator size optimised for 50-200 MHz (2 times smaller than optimal for > 30 MHz)
- Placed on 5 m pole
- diffraction scales as λ/h

Electronics:

- Filtering analogue signal in 30-230 MHz
- Digitisation using 14-bit ADC (AD9694) with sampling rate of 500 Msamples/s
- Procesing in Zynq FPGA with CPU (Xilinx XCZU5CG)
 - removing narrow-band sources
 - fast logic trigger
 - real-time Fourier transform
 - timestamp of <10 ns (5 ns aim)
- CPU
- DAQ (expected 10 mHz, can accept 10 Hz)

GRAND End-to-End simulation chain https://github.com/grand-mother/

DANTON

V_

ν —> τ decay backward MC over realistic topography *Niess & Martineau 1810.01978*

Antenna response

HorizonAntenna h=5m, f = 50-200MHz, optimized for very inclined trajectories Response simulated in NEC4

V(t)

Layout

DAO

background

Northing, x (km) $\stackrel{-}{\cong}$

-60

 $10^{\prime}000$ antennas with 1 km step square grid on area with favorable topography Trigger: Peak-to-peak voltage > $2\sigma_{\text{noise}}$ (agressive) or $5\sigma_{\text{noise}}$ (conservative) & cluster of 5 neighbouring antennas

shower

transient signal. A. Zilles et al. 2020, 1809.04912

Radio-Morphing

Interpolation of radio signals Tueros & Zilles arXiv:2008.06454

Trigged antennas 7000 $\frac{1}{900}$ Ev 2 101% eV; θ = 93% 7000 $\frac{1}{900}$ V CC interaction 7000 $\frac{1}{900}$ TianShan mountains, China 7000 $\frac{1}{900}$

Westing, y (km)

-60

UHE neutrino sources - can we detect?

Source: S. Chiche

- 580 2000 MHz
- Few dozens detected
- Few thousands should happen per day
- Few hundreds per day expected in GRAND (without pointing)
- ...if they extend below 200 MHz