
The New DD

1. ID Dictionaries
2. Configuration 

Vakho Tsulaia (LBNL)

Detector Description Session
ATLAS S&C Week

June 12, 2023



ID Dictionaries

New DD, V Tsulaia, Jun-12-2023 2



ID Dictionaries Today (I)

• ID Dictionary files are located in the Athena Git repository
• Location: DetectorDescription/IdDictParser/data

• 56 dictionary files in total
for all ATLAS subsystems

• Versioning: 
if a new dictionary 
is needed for some 
subsystem
then a new file is added 
to this directory

3New DD, V Tsulaia, Jun-12-2023



ID Dictionaries Today (II)

• ID Dictionary file names are linked with ATLAS tags in the geometry DB via a bunch of 
XXXIdentifier tables (one table per dictionary)

4New DD, V Tsulaia, Jun-12-2023



ID Dictionaries Today (III)

• In Athena jobs, IdDictDetDescrCnv::getFileNamesFromTags() collects the names of all 
dictionary files for the specific ATLAS version using the IRDBAccessSvc interface

• The files are read, and the dictionaries get initialized by the ID dictionary parser

5New DD, V Tsulaia, Jun-12-2023



ID Dictionaries in the New DD (I)

• Option #1 (this is how it works now)
• The strategy looks similar to what we have in the old system
• Dictionary file names are specified in the XML “tables”

• XML “table” is an XML object imported from the Geometry Database using the Oracle-to-XML 
mechanisms

• The XML “tables” are exported into SQLite tables
• We call such SQLite tables Auxiliary Tables

• IdDictDetDescrCnv::getFileNamesFromTags() collects the names of all dictionary files for 
the specific ATLAS version using the IRDBAccessSvc interface

• The files are read, and the dictionaries get initialized by the ID dictionary parser

NB. The green text has been copy-pasted from the previous slide

6New DD, V Tsulaia, Jun-12-2023



ID Dictionaries in the New DD (II)

• Option #2
• Instead of writing file names into SQLite tables, write there the entire XML dictionaries 

as BLOBs
• This will require some modifications on the Athena side so that the ID dictionary parser 

reads dictionaries as strings via the IRDBAccessSvc interface instead of reading the 
dictionary files from the disk

• Hopefully, this will not require many complicated changes to the ID dictionary parser 
code

7New DD, V Tsulaia, Jun-12-2023



ID Dictionaries in the New DD (III)

• Option #3
• Migrate away from XML dictionaries by replacing them with a set of data structures that 

can be written into SQLite as a one/several relational tables
• Many years ago, we had an idea/attempt to do such a thing which eventually led to nothing

• This would require major changes in the ID dictionary initialization mechanism
• This would also require rethinking the process of the creation of new dictionaries and 

fixing the existing ones
• Over past decades people in ATLAS got used to think about ID dictionaries as XML-s

8New DD, V Tsulaia, Jun-12-2023



ID Dictionaries in the New DD. Summary

• Option #1
• Write ID Dict file names into SQLite 
• No changes on the Athena side
• Already works

• Option #2
• Write ID dictionaries as blobs into SQLite
• Preserve XML structure of the dictionaries
• Expected to require relatively minor changes on the Athena side

• Option #3
• Replace XML dictionaries with SQLite tables
• Major change in the ID dictionary initialization procedure

9New DD, V Tsulaia, Jun-12-2023



Configuration

New DD, V Tsulaia, Jun-12-2023 10



Geometry Configuration Today

• The ATLAS geometry tag value needs to be set to the AtlasVersion property of 
GeoModelSvc
• This value can be passed to the job manually (i.e., via python scripts) 
• In the auto-configuration mode the job retrieves geometry flag from the TagInfo in-file metadata 

using input file peeking
• When running with Job Transforms, the geometry configuration is passed to the job using the 
geometryVersion command-line argument

• After obtaining the global geometry version tag, Athena also needs to determine which 
subsystems are available in the specified geometry version
• This information is used to avoid creating unnecessary components at configuration
• The mechanism for detecting available subsystems by geometry version is implemented in 
AutoConfigFlags.py

• Everything described on this slide must work after switching to the New DD 
infrastructure

11New DD, V Tsulaia, Jun-12-2023



Configuration in the New DD (I)

• Option #1
• We develop a mechanism for mapping Geometry Tags onto corresponding SQLite 

database file names
• This requires

• SQLite databases should be stored in a predefined location on CVMFS
• For the development and testing purposes the default location can be overridden for a job using an environment variable

• SQLite database files should be named using ATLAS geometry tags (e.g., ATLAS-R3S-2021-03-01-00.db)

• This mechanism should allow the transform to construct a full path to the SQLite file 
from the geometry version tag
• Obtained either from the CLI or by peeking into the input file

12New DD, V Tsulaia, Jun-12-2023



Configuration in the New DD (II)

• Option #2
• We write geometry tag value into SQLite database

• The name of the SQLite database file will be passed to Athena/Job Transform
• The job will peek into SQLite database, read the geometry tag and pass it to GeoModelSvc

• With this strategy we, in principle, can try to get rid of geometryVerion
• If desired …

• OTOH, it is not clear how this mechanism can support the retrieval of the geometry tag 
by peeking into input files (auto-configuration)

13New DD, V Tsulaia, Jun-12-2023



Configuration in the New DD. Summary

• Option #1
• We provide a mechanism for mapping geometry tags onto SQLite database names

• Option #2
• We write geometry tags into SQLite databases
• Not clear how we can support geometry version retrieval by input file peeking

• No matter which of the above options we choose, we need to provide a mechanism of 
peeking into SQLite files at configuration in order to determine the availability of various 
subsystems in the given SQLite db

14New DD, V Tsulaia, Jun-12-2023



Not discussed in this talk …

New DD, V Tsulaia, Jun-12-2023 15



Constructing valid identifiers inside plugin code

• What to do if some subsystem needs to construct valid Athena Identifiers in its plugin 
code?

• While we could store ID dictionaries in the GeoModelData repository (see slide #7 of this 
presentation), the code for constructing the Identifiers (ID dictionary parser, ID helpers, 
etc.) is not available for standalone applications

• Hence, the New DD infrastructure does not provide any mechanism for constructing valid 
identifiers in standalone plugins

• The only way the consistency can be achieved is to do that “by hand”, i.e., to build the 
identifiers inside plugins by some subsystem-specific custom way (e.g., by relying on 
volume copy numbers or so)

16New DD, V Tsulaia, Jun-12-2023


