Sensitivity of the FCC-ee to decay of an HNL into a muon and two jets

G. Polesello, N. Valle *INFN, Pavia*

22 May 2023 - Physics Performance Meeting

Framework

- Heavy Neutral Leptons (HNLs) as one of the most promising new physics channels for FCC-ee at the Z pole
- In this presentation: production from Z decay through mixing with light ν , decay: HNL $\rightarrow \mu q \bar{q}'$
 - High branching fraction ~50%
 - Good background rejection through constraints on HNL mass and missing energy

Framework

- One flavor assumed
- Model defined in terms of HNL mass and coupling U with active neutrino. HNL lifetime $\sim 1/U^2$
 - This analysis:
 - scan over the HNL mass, from 5 to 85 GeV
 - scan over U^2 according to existing excluded limits and a proper decay length (see next slide)
- Prompt analysis at high ($>\sim 50 \text{ GeV/c}^2$) HNL mass; Long-lived analysis at low HNL mass.

22/05/2023 Physics Performance Meeting

Samples

- Signal: 10k events for each point in (U^2, m_{HNL}) plane: MG5, Model SM_HeavyN_CKM_AllMasses_LO model, setting N_2, N_3 with ~ ∞ mass and no mixing.
- 91.2 GeV center-of-mass energy
- Pythia8 for hadronization and DELPHES for IDEA Detector fast simulation: official Spring2021 cards

Samples

- Background:
 - A. Z boson hadronic decay: muon in the final state from decay of a meson in one jet ($"Z \rightarrow bb, Z \rightarrow cc, Z \rightarrow u/d/s"$)
 - B. Z boson leptonic decays " $Z \rightarrow \mu\mu$, $Z \rightarrow \tau\tau$ " : muon and jets in the final state
 - C. four-fermion process $e^+e^- \rightarrow \mu \nu q q'$, which is an irreducible background
- A. and B. from official Spring2021 production
- C. 500k events with MG5, requiring only $|\eta| < 5$ and $M_{jets} > 5$ GeV. Pythia8 for hadronization and DELPHES for IDEA Detector fast simulation, using official Spring2021 cards

Samples

• Target lumi: 150 ab^{-1} , 5×10^{12} Z bosons

$Weight = \frac{1}{N_{acm}} \sigma \times L_{int}$	Sample	N_{gen}	Weight		
rgen	Signal				
	$10{ m GeV}$	10.0k	5498		
	$20{ m GeV}$	10.0k	5096		
	$30{ m GeV}$	10.0k	4568		
	$40{ m GeV}$	10.0k	3897		
	$50{ m GeV}$	10.0k	3091		
	$60{ m GeV}$	10.0k	2182		
	$70{ m GeV}$	10.0k	1254		
	$80{ m GeV}$	10.0k	471		
	Background				
	$Z \rightarrow bb$	$980.0\mathrm{M}$	1017		
	$Z \to cc$	990.0M	790		
	$Z \rightarrow u/d/s$	$1.0\mathrm{B}$	2792		
	$Z \rightarrow \mu \mu$	10.0M	21931		
	$Z \to \tau \tau$	10.0M	22148		
	$\mu\nu qq$	500.0k	1		

- Events filter with official FCCSW tools:
 - \geq 3 tracks; E_{miss} > 5 GeV ; at least one muon with p > 3 GeV/c
- Truth of stable particles + reco particle-flow objects + vertices written on output n-tuples
- Jet reconstruction:
 - Detailed study on different algorithms offered by FASTJET (<u>see June 2022 meeting</u>). Comparison with 4-momenta of partons
 - > Durham k_T alogorithm, forcing #jets = 2 if more than 2 jets are found

- Events filter with official FCCSW tools:
 - \geq 3 tracks; E_{miss} > 5 GeV ; at least one muon with p > 3 GeV/c
- Truth of stable particles + reco particle-flow objects + vertices written on output n-tuples
- Jet reconstruction:
 - Detailed study on different algorithms offered by FASTJET (<u>see June 2022 meeting</u>). Comparison with 4-momenta of partons.
 - > Durham k_T alogorithm, forcing #jets = 2 if more than 2 jets are found

- Sum of visible 4-momenta to select HNL mass and ν recoil energy: independent from jet algorithm
- Further background rejection by cutting on jets and muon angular distributions
- Event selecton dependent on #jets + mass-dependent M_{vis} and E_{miss} cuts
- Discriminating variables:

- Sum of visible 4-momenta to select HNL mass and ν recoil energy: independent from jet algorithm
- Further background rejection by cutting on jets and muon angular distributions
- Event selecton dependent on #jets + mass-dependent M_{vis} and E_{miss} cuts
- Discriminating variables:

• + technical cuts on missing momentum θ , and jet mass

• Efficiency of each selection on background: (% events passing the cut)

Variable	Variable N_{jet}		$s(p_{miss})$	$\cos(p_{miss},\mu)$	$\overline{E_j, M_j}$	cos(j,j)		$\mathrm{s}(j,\mu)$	$\cos(j,\mu)$	M_{tot}	
Cut	= 2	<	< 0.94	< 0.80	$> 3 \mathrm{GeV}$ > $0.2 \mathrm{GeV}$	> -().80 <	0.80	> -0.98	> 80	Combined
Background											
$Z \rightarrow bb$	(100)		91	18	100	1		7	33	89	0
$Z \to cc$	$Z \to cc$ (100)		91	10	100	1	1 5		16	95	0
$Z \rightarrow u/d/s$	(100)		86	22	100	2		37	70	98	0
$Z \to \mu \mu$	(6)		40	93	27	60)	40	80	93	0
$Z \to \tau \tau$	$\rightarrow \tau \tau$ (3)		93	24	13	46	5	58	52	44	0
$\mu u qq$	(73)		94	94	99	61		86	96	99	44
Varial	ble	N_{jet}	$\cos(p_{mis})$	$_{s}) \cos(p_{miss})$	$(,\mu)$ E_j, N	Λ_j	$\cos(j,\mu)$	$\cos(j,\mu$	$(\iota) M_{tot}$		
Cut	;	= 1	< 0.94	< 0.50	> 3 G > 0.2 G	eVGeV	< 0.96	> -0.	5 > 80	Comb	bined
Backgro	ound										
$Z \rightarrow$	bb	(0)	—	_	_		_	_	—	-	_
$Z \rightarrow$	cc	(0)	—	—	—		—	_	—	-	-
$Z \to u_{/}$	/d/s	(0)	_	_	—		_	_	_	_	-
$Z \rightarrow \mu$	$\mu\mu$	(94)	30	99	64		88	57	96	5	Ď
$Z \to T$	au au	(97)	93	8	100)	100	0	35	C)
$\mu u q$	q	(27)	93	94	100)	98	63	99	5	6

• Signal efficiency from $\sim 80 \%$ (M=20 GeV) to $\sim 50 \%$ (M=70 GeV). $\sim 30 \%$ at M=80GeV

• Sum of visible 4-momenta to select HNL mass and ν recoil energy

- Requiring $M_{vis} \in M_{HNL} \pm \Sigma$ and $E_{miss} \in p_{v,nominal} \pm \Sigma$
- With $\Sigma = 2 \times 20\% \times \sqrt{M_{HNL}}$
 - 20 GeV $\rightarrow \Sigma = 1.9$ GeV ... 70 GeV $\rightarrow \Sigma = 3.3$ GeV
 - Fixed mass window and different width factors also studied

Vertex displacement

- Residual background mainly from hadronic ($b\bar{b}$) Z decay at higher mass and 4-fermion channel at low mass
- Hadronic channel suppressed by requiring muon coming to Interaction Point
- Irreducible background purely prompt: suppressed by looking for long-lived HNL events
 - Prompt analysis at high mass: muon impact parameter $D_{0,\mu} < 8 \sigma$
 - Long-lived analysis at low mass: $D_{0,\mu} > 1 \text{ mm}$
 - $\sigma = O(5 \ \mu m) \rightarrow$ far from a critical region for jet reconstruction
 - Importance of tracker pointing resolution

^{22/05/2023} Physics Performance Meeting

Vertex displacement

- Residual background mainly from hadronic ($b\bar{b}$) Z decay at higher mass and 4-fermion channel at low mass
- Hadronic channel suppressed by requiring muon coming to Interaction Point
- Irreducible background purely prompt: suppressed by looking for long-lived HNL events
 - Prompt analysis at high mass: muon impact parameter $D_{0,\mu} < 8 \sigma$
 - Long-lived analysis at low mass: $D_{0,\mu} > 1 \text{ mm}$
 - $\sigma = O(5 \ \mu m) \rightarrow$ far from a critical region for jet reconstruction
 - Importance of tracker pointing resolution
- ✤ Working to implement selection based on results of vertex fitter
- Beam spread in Spring2021:
 - ~ 300 μm along z
 - ~ 4.5 μm along y
 - Implemented as Vertex Spread in Pythia8 also in our MG samples
- Looking into Winter2023

LL analysis with no background

• Very few events left by $D_{0,\mu} > 1$ mm at low mass \rightarrow high sensitivity to statistical fluctuation

• Systematics to be properly evaluated given the high MC weights, and given the sensitivity to some analysis parameters (e.g. next slide)

LL analysis with no background - parenthesis

- Systematics to be properly evaluated given the high MC weights, and given the senstivity to some analysis parameters
- E.g.: jet merging scale = $5^2 \text{ GeV}^2 \text{ vs } 10^2 \text{ GeV}^2$

• Currently looking into signatures in any of the residual bacgkround contributions

(Preliminary) results

• Looking for U^2 producing 95% CL excess of events

For each HNL mass M: $P[n < b | HNL(M, U^2)] = 1 - CL$

b =#background events

• Delaunay triangles interpolation in the *M*-Log(U) plane

(Preliminary) results

• Delaunay triangles interpolation in the *M*-Log(U) plane

(Preliminary) results

• Looking for U^2 producing 95% CL excess of events

For each HNL mass M: $P[n < b | HNL(M, U^2)] = 1 - CL$

b =#background events

(Very preliminary) view on detector resolution

- Fast simulation with parametric energy resolution based on particles
- Impact of resolution could be assessed "home-made" by smearing jets built from stable particles
- A faster approach: enlarge or narrow the mass window to simulate a larger/narrower signal peak

Summary

- Sensitivity to HNL $\rightarrow \mu j j'$ studied in the mass range 5 80 GeV
- The study completes and extended Snowmass reports results focused on long-lived signatures
- The long-lived decays dominate at smaller (< 50 GeV/c^2) HNL mass and the foreseen background can be (fully) rejected by the presented event selections
- Analysis presented here based muon impact parameter cut, effective variable especially for prompt signals. Other possiblities are under study

Next steps

- Open work lines on:
 - Closer look at the origin of some remaining background events
 - Study of reconstructed vertices, by exploiting the latest software functionalities
 - Jet energy smearing and its impact on the sensitivity of the analysis
- Systematics will be included
- Analysis note draft v1.0 exists... preparing the next version (some corrections already presented here)
 - Thanks for the valuable suggestions already received.. working on them.