$H \rightarrow$ invisible at FCC *ee* Higgs FCC Meeting

Andy Mehta, Nikos Rompotis

May 22, 2023

Introduction

- Repeat of analysis with Winter 2023 Samples
- Have much better hadronic resolution
- Rerun flavour tagging
- Slow so don't have all the MC stats
- Can use c tagging also

Analysis Overview

- ${\rm \bullet}~{\rm Estimate}$ sensitivity of $H \rightarrow$ invisible using ZH events in e^+e^- simulated data
- Only studied $\sqrt{s} = 240$ GeV events
- Assume $\int L = 5 \text{ ab}^{-1}$
- Using $Z \rightarrow ee$, $\mu\mu$, bb and qq channels
- Delphes simulation
- Backgrounds dilepton (Z), ZZ, WW and ZH
- Some diagrams not included in ZZ and WW samples labelled 'WZ'
- Will need dedicated four fermion samples with interference, but not expected to make a large difference to results
- SM ZH → νννν treated either as a background when determining limits or a signal when determining precision on measurement
- Taus not studies yet but could be useful in reducing backgrounds
- Signal taken at SM value (BR(*Hto* inv. =0.1%) but shown in plots with a scale of 1000 for clarity

Fig. 1. Feynman diagrams contributing to the process $e^+e^- \rightarrow Z^0\nu\overline{\nu}$; (a) Z-exchange diagrams (with Z^0 in the s-channel); (b) W-exchange diagrams (with $W^{\pm}(s)$ in the t-channel).

Method

- Split events into exactly 2e, 2μ and 0 $e+\mu$
- ${\scriptstyle \bullet }$ Reject events with 1 or ${\scriptstyle \geq }$ 3 leptons
- bb channel defined if at least one of the two leading jets is b-tagged
- cc channel either 1 c-tag or 2 c-tags (split in fit)
- Require $p_T^{\text{miss}} > 10/15$ GeV for $ee, \mu\mu, qq/cc, bb$ to suppress dilepton background
- Reconstruct Z from 2 leptons or M_{vis} (Invariant Mass of all particles)
- Cut on 3/6 GeV around $M_Z=$ 91 GeV for $ee,\mu\mu/~qq,~cc,~bb$ channels
- Resolution so good in new samples we can have the same cut on *bb* channel and do not have to scale to *Z* mass
- \bullet Use distribution of $\mathit{M}_{\rm miss}$ in likelihood fit using HistFitter
- Float signal, ZZ and WW backgrounds. Fix ZH and dilepton background
- Easy to add systematics but only lumi (1%) added for now
- Split qq channel into jet multiplicity

Results SM fit

Floating SM signal 50% measurement possible (twice as good as Spring 2021) *bb* and *cc* channels better than Spring 2021 *qq* Better hadronic resolution is the main cause Smaller improvements from better flavour tagging

Effects of hadronic smearing

Add an extra Gaussian smearing to hadronic channels.

Results in 130% increase in error for qq channel and 80% in the combined for a 5% additional smearing

Effects of leptonic smearing

Add an extra Gaussian smearing to leptonic channels. Results in 8% increase in the error for the combined for a 5% additional smearing

Backup 2

Samples

/eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/
wzp6_ee_qqH_ecm240
wzp6_ee_mumuH_ecm240
wzp6_ee_tautauH_ecm240
wzp6_ee_nunuH_ecm240
p8_ee_ZZ_ecm240
wzp6_ee_nuenueZ_ecm240
wzp6_ee_muenu_ecm240
p8_ee_Zqq_ecm240
p8_ee_Zq_ecm240
p8_ee_ZZ_ecm240
p8_ee_ZZ_ecm240/

- 10 M events in each sample
- Must split the ZH MC into signal $(H \rightarrow \nu \nu \nu \nu)$ and background

Dilepton Background

Shown after m_Z and $M_{\rm miss}$ cuts $p_T^{\rm miss} < 5$ GeV not shown for plot clarity

Very effective cut against dilepton background Best to have different cuts for the different channels

Normalized Signal Resolution

Much better resolutions that old samples ee channel similar to $\mu\mu$ bb almost as good as qq - no rescaling necessary

M_Z Full Range After p_T^{miss} cut

As there is no jet selection qq channel also includes $ZZ/WW \rightarrow qqqqq$

$M_{\rm miss}$, M_Z cut, Zoom

Range shown is is used in the fit

Results SM fit

Floating SM signal 50% measurement possible (twice as good as Spring 2021) *bb* and *cc* channels better than Spring 2021 *qq* Better hadronic resolution is the main cause Smaller improvements from better flavour tagging

Discovery Fit

SM signal treated as a background Could discover $H \rightarrow$ new invisible above SM background with BF=0.2%

Summary

- Estimated FCC ee $H \rightarrow$ invisble potential using Delphes simulated data
- Looked at new Winter 2023 samples
- Much better resolutions than previous
- $Z \rightarrow qq$ channel much better than other channels
- c-tagging, b-tagging and jet multiplicity splitting improves the result a little
- 2 σ measurement assuming SM (BR \simeq 0.1%)

Backup 2

Old Samples

/eos/experiment/fcc/ee/generation/DelphesEvents/spring2021/IDEA/p8_ee_ZZ_ecm240/ /eos/experiment/fcc/ee/generation/DelphesEvents/spring2021/IDEA/p8_ee_WW_ecm240/ /eos/experiment/fcc/ee/generation/DelphesEvents/spring2021/IDEA/p8_ee_ZH_ecm240/ /eos/experiment/fcc/ee/generation/DelphesEvents/spring2021/IDEA/p8_ee_Z1L_ecm240/ /eos/experiment/fcc/ee/generation/DelphesEvents/spring2021/IDEA/p8_ee_Z4_ecm240/

- 10 M events in each sample
- Must split the ZH MC into signal $(H \rightarrow \nu \nu \nu \nu \nu)$ and background

M_Z Zoomed

ZH background already very small. Handronic Higgs decay ($ZH \rightarrow \nu\nu\nu bb$ or $ZH \rightarrow \nu\nu qqqq$) well separated from Z peak.

dilepton background small but not negligible

$M_{\rm miss}$ w/o M_Z cut

 $M_{
m miss}$ very effective against ZZ background