
ML Part 2: Intro to Neural networks

Abhijith Gandrakota

1

 Lecture adapted from J. Ngadiuba’s  
and M. Kagan’s courses

CODAS-HEP 2023

Princeton University, NJ

Abhijith Gandrakota 2

 

In this session! 

Linear  
regression Transformers

Graphs, etc

Range of ML Algorithms

Abhijith Gandrakota

Recap: Linear Regression
• Set of inputs() & Output() pairs, which comprises our data

• Inputs: (is the number of features)

• Targets: (is the number of features) 

• Model that describes it:

• Training was to find the best parameters  
That describe the data well 

• Objective:

• The model here is linear in weight space

xi yi

xi ∈ ℝm m

yi ∈ ℝn n

̂y = WT X

W

3

Abhijith Gandrakota

Recap: Logistic Regression
• Set of inputs() & Output() pairs, which comprises our data

• Inputs: (is the number of features)

• Targets: (classes) 

• Model that describes it:

• Map the output to a logistic sigmoid 

xi yi

xi ∈ ℝm m

yi ∈ {0,1}n n

̂y = WT X

4

5

Show me neural networks !

Enough with curve fitting !

This is just rudimentary !

I guess we can talk a little  
about NNs

NNs are basically high dim curve fitting !

6

Show me neural networks !

Enough with curve fitting !

This is just rudimentary !

Do you want NNs?

Just add some non-linearity to the model !

Abhijith Gandrakota

Lets take another look
• We can represent Logistic regression as

7

Abhijith Gandrakota

Take inspiration from neurons
• Lets introduce some non-linearity using an additional function

8

h | f σ (f(WT X + b))
f : “Activation” function

Abhijith Gandrakota

Why care about non-linearity ?
• We might require a non-linear decision boundary

• How do we pick the set of ? | ϕ(x) ϕ(x) ∼ {x2, sin(x), . . . }

9

Abhijith Gandrakota

More non-linearity !
• How do we pick the set of basis functions ?

• We can learn the basis functions data !

• We can define the basis functions: |

• Now the model is

ϕ(x)

ϕ(x; U) : ℝm → ℝd

h(x; U, W) = WTϕ(x; U)

10

Abhijith Gandrakota

Why stop there ?
• Now we have a “Deep Neural Network”

• This is what we call it as the multi layer perceptron (MLP)

11

Abhijith Gandrakota

Who do we get ?
• Non-linearity from the MLPs

12

[Source]

Binary classification
1-hidden layer NN

4-class classification
2-hidden layer NN

[source]

https://dennybritz.com/posts/wildml/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Abhijith Gandrakota

Universal Approximation Theorem
 
 

(Feed-forward) NN with a single hidden layer containing a finite number of
neurons can approximate continuous functions arbitrarily well on a space 

 

• Only simple assumptions on activation functions 

• But no other information are added on how many neurons needed, or how
much data! 

• How to find the parameters, given a dataset, to perform this approximation?

13

Abhijith Gandrakota

Universal Approximation Theorem
 
 

(Feed-forward) NN with a single hidden layer containing a finite number of
neurons can approximate continuous functions arbitrarily well on a space 

 

• Only simple assumptions on activation functions 

• But no other information are added on how many neurons needed, or how
much data! 

• How to find the parameters, given a dataset, to perform this approximation?

14

Backpropogation !

Abhijith Gandrakota

Optimizing the NNs
• To begin with we need to know the loss or objective to minimize

• For classification: Use cross-entropy 

• For regression: Use squared error or something similar

15

Abhijith Gandrakota

Optimizing the NNs
• We have loss defined, for MLP with many hidden layers 

• Forward step / propagation : Compute and save the intermediate hidden
. layer outputs 

• Backward step / propagation: Calculate the derivative with respect to the.
. input and the hidden layers

• Compute the parameter gradients:  

16

17

OMG this is just  

too abstract !

When does the application part ?

Is it even easy to use in my research ?

We are getting there

18

Now let’s take another look at everything!

19

Abhijith Gandrakota

Throwback: Activation functions
• Lets introduce some non-linearity using an additional function

20

h | f σ (f(WT X + b))
f : “Activation” function

f

Abhijith Gandrakota

Activation functions
• We could use something like sigmoid as activation (earliest activations)

• But for values far from 0, gradient vanishes !

21

0

0

Abhijith Gandrakota

Activation functions
• Alternatively, many modern NNs use Rectified Linear Unit (ReLU)

• Gradient at 0 is set to 1

• Gradient ~1 for all positive values, but vanishes for all negative values

• Useful to induce sparsity in the network !

22

0

0

Abhijith Gandrakota

Activation functions
• Sometimes, with bad initialization ReLU can make all of neurons “dead” in the

network

• We could have too much sparsity  

• We mitigate this problem with a “Leaky ReLU”

23

Abhijith Gandrakota

When to use MLPs ?

• MLPs: A very generalized way to look at patterns in data

• Not efficient is there is inherent structure that we can use. [e.g: Images]

• Best for distilled inputs or engineered inputs: High-Level features

• Given sub-structure variables, identifying the jet source

• Regress the metallicity of the stars from the

24

Abhijith Gandrakota

Regularization
• DNNs can easily overfit the data !

• We can regularize the network to avoid  
this problem

• Approach 1: L2 regularization

• Add to loss function, avoid large weights saturating network 

• Approach II: Drop out / Randomly kill fraction of the nodes during training  

∥W2∥

25

Abhijith Gandrakota

Iterating over the datasets
• We have to perform optimization of DNNs until they converge

• How do we do it with limited dataset ?

• We splits the dataset in chunks / batches

• Compute loss and update the weights with each batch

• Small batch size results in faster computation but noisy training

• Large batch size demands more memory, results in sharper gradients

• At the end of one training cycle / epochs, we repeat the process multiple
times on the dataset until it reaches convergence

26

Abhijith Gandrakota

Gradient descent in DNNs
• In training of NNs, we optimize the model paper meters at end of each batch 

 

• So in this case we use the Stochastic  
Gradient Descent

• Reduces the very high  
computational burden  
 

• The most widely adapted method  
is called ADAM

• Uses momentum fraction of the  
previous update is added to the current

• Helps achieve faster convergence of the network

27

Abhijith Gandrakota

Best practices for best performance
• Make sure that data has no nan / inf or any unphysical values

• Many way to take care of them ! 

• For better classification, standardize the input dataset

• Typically good for the input features to have

• Backpropagation and activation function don’t explicitly require it

• Helps for a faster and better convergence

• Check performance and overfitting w/ validation dataset at end of each epoch 

• Perform training with multiple seeds, ensure you reach a robust minimum 

μ ∼ 0, σ ∼ 1

28

Abhijith Gandrakota 29

Abhijith Gandrakota

Exercise problem
• Identification of jets arising from hadronization of boosted W/Z/H/top

• A key and important task in high energy physics

• Analytical sub-structure(s) variables contain information about hadronization

• We are using MLPs to approximate Jet Flavorf(S) →

30

Abhijith Gandrakota

Training dataset

• Input:

• Various substructure variables of jets 

• Objective:

• Tagging the origin of the jet 

• Explore the dataset and get the best performance possible !

31

Abhijith Gandrakota

Tools for ML

• Easy to get started

• Best for simple
operations

• Lot of Built-in Fn &
documentation

• Hard to customize

32

• Also has has lot of
libraries

• Very easy to customize

• Needs more lines of code
compared to Keras

• Memory efficient

• Extremely versatile

• Can do beyond NNs,
use it like accelerated
numpy

• Performes Autograd

FLAX

Abhijith Gandrakota

Tools for ML

• Easy to get started

• Best for simple
operations

• Lot of Built-in Fn &
documentation

• Hard to customize

33

• Also has has lot of
libraries

• Very easy to customize

• Needs more lines of code
compared to Keras

• Memory efficient

• Extremely versatile

• Can do beyond NNs,
use it like accelerated
numpy

• Performes Autograd

Abhijith Gandrakota

What to do ?
• Identify the best features possible for this task

• Optimize the hyper parameters: learning rate, batch size, Droup out

• Change the architecture, make the network deeper and wider

• Can you plot Signal vs BKG ROC curves ?

• QCD [Quark/gluon jets] is the background 

• Can you look up TF/Keras API and implement weight initialization ?

34

Abhijith Gandrakota

Callbacks

• Try implementing the callbacks in the network. 

• Reduces the learning rate when the model is getting saturated 

• Stop the training before the model overfits the data

• Refer to Keras API and implement them. 
 

• Has it improved in faster convergence ?

35

Abhijith Gandrakota

Bayesian optimization
• In a NN / model optimization, we are extremizing a

objective function / loss

• For a given set of hyper parameters, we have best
loss after training

• Gaussian Process to X (x1,x2,..; hyper-parameters),
Y (objective function / loss)

• From GP prediction, check where we’d have a
extrema from this fit w/ some certainty

• Try that point and repeat ! 

• We map out the for the objective function space of
HPs

• Try this feature using the Keras Tuner etc . . .

36

Abhijith Gandrakota

Need Intuition ?

Try : playground.tensorflow.org

37

http://playground.tensorflow.org

Abhijith Gandrakota

Logging your experiments
• Done with exercises ?

• Can you track your experiments with WandB ?

• Like GitHub, but you NN weights and tracking multiple trainings

• https://docs.wandb.ai/tutorials 

• Log your experiments in the WandB

• Modify the notebook to use WandB logging API

• Do you see a preference of hyper parameters 

• Launch multiple experiments  

38

https://docs.wandb.ai/tutorials

