2= Fermilab

ML Part 2: Intro to Neural networks

Abhijith Gandrakota

CODAS-HEP 2023
Princeton University, NJ

Lecture adapted from J. Ngadiuba’s
and M. Kagan'’s courses

2= Fermilab

Range of ML Algorithms

Linear
| Transformers
regression Graphs, etc
T —
In this session!
C esem— R

Abhijith Gandrakota 2

Recap: Linear Regression 3¢ Fermilab

+ Set of inputs(x;) & Output(y;) pairs, which comprises our data

+ Inputs: x; € R™ (m is the number of features) S L B e R
2 |- Ex w/ only one feature x; —

+ Targets:y, € R" (n is the number of features)

+ Model that describes it: § = WX

» Training was to find the best parameters W S) E—
. -1.0 -0.5 0.0 05 1.0
That describe the data well .
1 & 0-50K " and one parameter wq |
© Objective: Z(W) =—) (v, — h(x; W))? L 045
n 4 040 |
=1 %
B 035 F
= 0.30 -
+ The model here is linear in weight space 025
0.20 - ' '

Abhijith Gandrakota 3

Recap: Logistic Regression 3¢ Fermilab

+ Set of inputs(x;) & Output(y;) pairs, which comprises our data
+ Inputs: x; € R™ (m is the number of features)

+ Targets:y, € {0,1}" (n classes) \

+ Model that describes it: § = WX

+ Map the output to a logistic sigmoid

1 1
p(y=1|x)=pi=1+e—h(x;W)=1+e—wa g;l’
. —
]
/ al |
6 -4 -2 0 2 4 6

Abhijith Gandrakota 4

Show me neural networks ! ittle
Enough with curve fitting | guess e Sl e

This is just rudimentary ! NNs are basically high dim curve fitting:

Y,)

Show me neural networks !
Enough with curve fitting ! Do you want NNs?

This is just rudimentary ! Tust add some non—linearity to the model !

))

. :
Lets take another look 3¢ Fermilab

* We can represent Logistic regression as

h . o(h(x, W)) =

[+ e—hoxw)

Abhijith Gandrakota 7

* =
Take inspiration from neurons a Fermilab

+ Lets introduce some non-linearity using an additional function

h|f - o fW'X+b))

f :“Activation” function

Abhijith Gandrakota 8

* E
Why care about non-linearity ? a Fermilab

* We might require a non-linear decision boundary

+ How do we pick the set of ¢(x) ? | p(x) ~ {x*, sin(x), ...}

Abhijith Gandrakota 9

* -
More non-linearity ! ar Fermilab

+ How do we pick the set of basis functions ¢(x) ?

- We can learn the basis functions data !] _
a(urfx)

- We can define the basis functions: ¢(x; U) : G(I{EX) | R"™ — R

o(u}x)

- Now the model is h(x; U, W) = W!¢(x; U)

Abhijith Gandrakota 10

Why stop there ! 3¢ Fermilab

* Now we have a “Deep Neural Network”

» This is what we call it as the multi layer perceptron (MLP)

Input layer 2nd hidden layer
1st hidden layer

Abhijith Gandrakota 11

2= Fermilab

Who do we get !

;o by
m ooo Oooo ooo ooo &
.m ooo ~oo on\ \ooooo.ﬁoooooOon .w N
o o ..m..m.. .c.u o .o..u. R Z
w ooo o oo‘o ooo“o“.o'mof - w. ﬂm Qrb e
S be o . o.w.o..' o 8% .m._. a2 O
— o 4 ° ® e
) s &7 ’ﬂoooo > 8. “‘ ° v L -
O F . %»0 o ¢ ”* c — u
e - oﬂ 000 voooo ‘e ® d c O
IR N X5 3. A e Q %
— °®) ‘ ® Qe (72]
o) PP oﬁo 11 % ® s s ® w d —
E Y sowoo. ™ ..cw. o0 LY
5 e WAL SN TS U <
= o ® \0“000 o %o Vo ° . "
< P R Y X <+ N
m LR e “&oooooo.oo*oooooo *,
% fle °* *oo °
N O.”OO o O 0”0“0

[Source]

Binary classification
| -hidden layer NN

12

Abhijith Gandrakota

* Non-linearity from the MLPs

https://dennybritz.com/posts/wildml/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

* =
Universal Approximation Theorem 3 Fermilab

(Feed-forward) NN with a single hidden layer containing a finite number of
neurons can approximate continuous functions arbitrarily well on a space

* Only simple assumptions on activation functions

* But no other information are added on how many neurons needed, or how
much data!

Abhijith Gandrakota 13

* =
Universal Approximation Theorem 3 Fermilab

(Feed-forward) NN with a single hidden layer containing a finite number of
neurons can approximate continuous functions arbitrarily well on a space

* Only simple assumptions on activation functions

* But no other information are added on how many neurons needed, or how
much data!

How to find the parameters, given a dataset, to perform this approximation?

Backpropogation !

Abhijith Gandrakota 14

Optimizing the NNis 3% Fermilab

+ To begin with we need to know the loss or objective to minimize

+ For classification: Use cross-entropy
pi = p(yi = 1fx:) = o (h(xi))

Liw,U) =— Zyz In(p;) + (1 —y;) In(1 — p;)

+ For regression: Use squared error or something similar

L(w,U) = 5 3 (01 — h(x))

1

Abhijith Gandrakota 15

L, 3 =
Optimizing the NN ¢ Fermilab
* We have loss defined, for MLP with many hidden layers
L(¢*(...¢"(x)))

* Forward step / propagation : Compute and save the intermediate hidden
layer outputs

°(...9" (x))

: Calculate the derivative with respect to the.
input and the hidden layers

oL ZB¢§“+” oL
995

- Compute the parameter gradients: 0L 095 OL

owe - ow? 09

Abhijith Gandrakota 16

OMG this is just

too abstract !
\

When does the application
5 it even easy to vse in My

N

part ?
esearch ?

17

Ve are getting there.....

Now let’s take another look at everything!

* ™
Throwback: Activation functions a Fermilab

+ Lets introduce some non-linearity using an additional function

f - o fW'X+b))

I “Activation” function

W g

Abhijith Gandrakota 20

* =
Activation functions ar Fermilab

* We could use something like sigmoid as activation (earliest activations)

+ But for values far from 0, gradient vanishes !

Abhijith Gandrakota 21

* =
Activation functions ar Fermilab

+ Alternatively, many modern NNs use Rectified Linear Unit (RelLU)
* Gradient at O is set to |
+ Gradient ~| for all positive values, but vanishes for all negative values

Useful to induce sparsity in the network !

0

Abhijith Gandrakota 22

* =
Activation functions ar Fermilab

- Sometimes, with bad initialization ReLU can make all of neurons “dead” in the
network

* We could have too much sparsity

* We mitigate this problem with a “Leaky ReLU”

Leaky RelLU: y=0.01x
/

Abhijith Gandrakota 23

When to use MLPs ?

AT
AP AN NS N BGPA
QN @@ i@}
T T LTSS
b @t @t vt @t
ERARSR, BAXERK ™ EDOIK KAHICK)
NS GARXPTHRII OO
N N N 0

@\ \v/Z8\

/} O
AN

,.«o‘ ,&'}'ﬁ,
W2/ 2
AT Z

+ MLPs: A very generalized way to look at patterns in data

2= Fermilab

+ Not efficient is there is inherent structure that we can use. [e.g: Images |

- Best for distilled inputs or engineered inputs: High-Level features

» Given sub-structure variables, identifying the jet source

* Regress the metallicity of the stars from the

Abhijith Gandrakota

24

2= Fermilab

Regularization N -
* DNNs can easily overfit the data !
* We can regularize the network to avoid
this problem
+ Approach |:L2 regularization

-2 -1 0 1 2

- Add ||W?| to loss function, avoid large weights saturating network

» Approach Il: Drop out / Randomly kill fraction of the nodes during training

a) Standard Neural Net (b) After applying dropout.

Abhijith Gandrakota 25

L, 3 =
Iterating over the datasets a Fermilab

* We have to perform optimization of DNNs until they converge

- How do we do it with limited dataset ?

* We splits the dataset in chunks / batches
+ Compute loss and update the weights with each batch
+ Small batch size results in faster computation but noisy training

- Large batch size demands more memory, results in sharper gradients

+ At the end of one training cycle / epochs, we repeat the process multiple
times on the dataset until it reaches convergence

Abhijith Gandrakota 26

Gradient descent in DNNs 3¢ Fermilab

* In training of NNs, we optimize the model paper meters at end of each batch

- So in this case we use the Stochastic
Gradient Descent

* Reduces the very high
computational burden

* The most widely adapted method
is called ADAM

* Uses momentum fraction of the
previous update is added to the current

* Helps achieve faster convergence of the network

Abhijith Gandrakota 27

* =
Best practices for best performance ¥ Fermilab

» Make sure that data has no nan / inf or any unphysical values

+ Many way to take care of them !

* For better classification, standardize the input dataset
- Typically good for the input features to have u ~0, o~ 1
+ Backpropagation and activation function don’t explicitly require it

* Helps for a faster and better convergence

* Check performance and overfitting w/ validation dataset at end of each epoch

* Perform training with multiple seeds, ensure you reach a robust minimum

Abhijith Gandrakota 28

2= Fermilab

C'mon,
do something...

OIN

W< N<7I <7

@50 /AN /AN /AN /AN /AN
SR$GELL% XK X H I X NS
N RN O\
A0 A
X X A“ XX g

K9 Qs ."{ W

S ¢ N L KK

R 7

:
2NN TG RN AL IR, IR —AAAENR
72 XN\ ZAZOSKN ZAON VRO /Z20SRN
NN

Abhijith Gandrakota 29

L, B =
Exercise problem a Fermilab

- ldentification of jets arising from hadronization of boosted W/Z/H/top
* A key and important task in high energy physics
» Analytical sub-structure(s) variables contain information about hadronization

* We are using MLPs to approximate f($) — Jet Flavor

t—=bW-bqq Z—qq W-=qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ 0

Reconstructed as one massive jet with substructure

Abhijith Gandrakota 30

* =
Training dataset 3 Fermilab

BACKGROUND JET —— SIGNAL JETS
(single q/q) /9

t—UuJg—
h/UJ/Z—aq Q—qqQq

* Input:

* Various substructure variables of jets

- Obijective:

- Tagging the origin of the jet

+ Explore the dataset and get the best performance possible !

Abhijith Gandrakota 31

Tools for ML 3¢ Fermilab

Y 4

' PN)
1 TensorFlow O PyTorch 2478

:“ A\
Ke ra S PyTorch Lightning rftﬁ,zrﬁ;: FLAX

NS

2

+ Easy to get started » Also has has lot of * Extremely versatile
. libraries
+ Best for simple » Can do beyond NN,
operations * Very easy to customize use it like accelerated
_ . numpy
* Lot of Built-in Fn & Needs more lines of code
documentation compared to Keras * Performes Autograd
* Hard to customize + Memory efficient

Abhijith Gandrakota 32

Tools for ML

1| TensorFlow

Keras

+ Easy to get started

+ Best for simple
operations

- Lot of Built-in Fn &
documentation

- Hard to customize

O PyTorch

PyTorch Lightning

- Also has has lot of

libraries

* Very easy to customize

- Needs more lines of code

compared to Keras

+ Memory efficient

Abhijith Gandrakota

2= Fermilab

" . ¢

L. AW ‘A“
Y WY W

* Extremely versatile

» Can do beyond NN,

use it like accelerated
numpy

* Performes Autograd

33

What to do ? 2= Fermilab

- ldentify the best features possible for this task
+ Optimize the hyper parameters: learning rate, batch size, Droup out
+ Change the architecture, make the network deeper and wider

» Can you plot Signal vs BKG ROC curves !
- QCD [Quark/gluon jets] is the background

» Can you look up TF/Keras APl and implement weight initialization ?

Abhijith Gandrakota 34

Callbacks 2= Fermilab

- Try implementing the callbacks in the network.
* Reduces the learning rate when the model is getting saturated

+ Stop the training before the model overfits the data

+ Refer to Keras APl and implement them.

* Has it improved in faster convergence !

Abhijith Gandrakota 35

* =
Bayesian optimization aF Fermilab

In a NN / model optimization, we are extremizing a
objective function / loss

ParBayesianOptimization in Action (Round 1)
For a given set of hyper parameters, we have best
loss after training o

(Model Perfor

Gaussian Process to X (xi,X2,..; hyper-parameters), : °*
Y (objective function / loss)

From GP prediction, check where we’d have a
extrema from this fit w/ some certainty R . \AN

5 0.66

’ L 1 1 1

=2 0.75
s
W o
TE s
5 025
1 1 1

We map out the for the objective function space of : © et °
HPs

Try that point and repeat !

Try this feature using the Keras Tuner etc ...

Abhijith Gandrakota 36

eed Intuition !

Q-

DATA

Which dataset do
you want to use?

8

Ratio of training to
test data: 50%
—e

Noise: 0

Batch size: 10
—e

REGENERATE

Epoch

000,000

FEATURES

Which properties do

you want to feed in?

‘o

Learning rate Activation Regularization
0.03 v Tanh v None
4+ — 2 HIDDEN LAYERS
+ - + -
4 neurons 2 neurons
p 4
p 4
|> < The outputs are
mixed with varying
weights, shown
by the thickness
¢ of the lines.

(

This is the output
from one neuron.
Hover to see it
larger.

2= Fermilab

Regularization rate Problem type

0 v Classification v

OUTPUT

Test loss 0.520
Training loss 0.524

Colors shows

data, neuron and ! I
1

weight values.

[Showtestdata [J Discretize output

Try : playground.tensortlow.org

Abhijith Gandrakota

37

http://playground.tensorflow.org

Logging your experiments 3¢ Fermilab

- Done with exercises ?

» Can you track your experiments with VWandB ?
- Like GitHub, but you NN weights and tracking multiple trainings

+ https://docs.wandb.ai/tutorials

* Log your experiments in the VWandB
* Modify the notebook to use WandB logging API

+ Do you see a preference of hyper parameters

* Launch multiple experiments

Abhijith Gandrakota 38

https://docs.wandb.ai/tutorials

