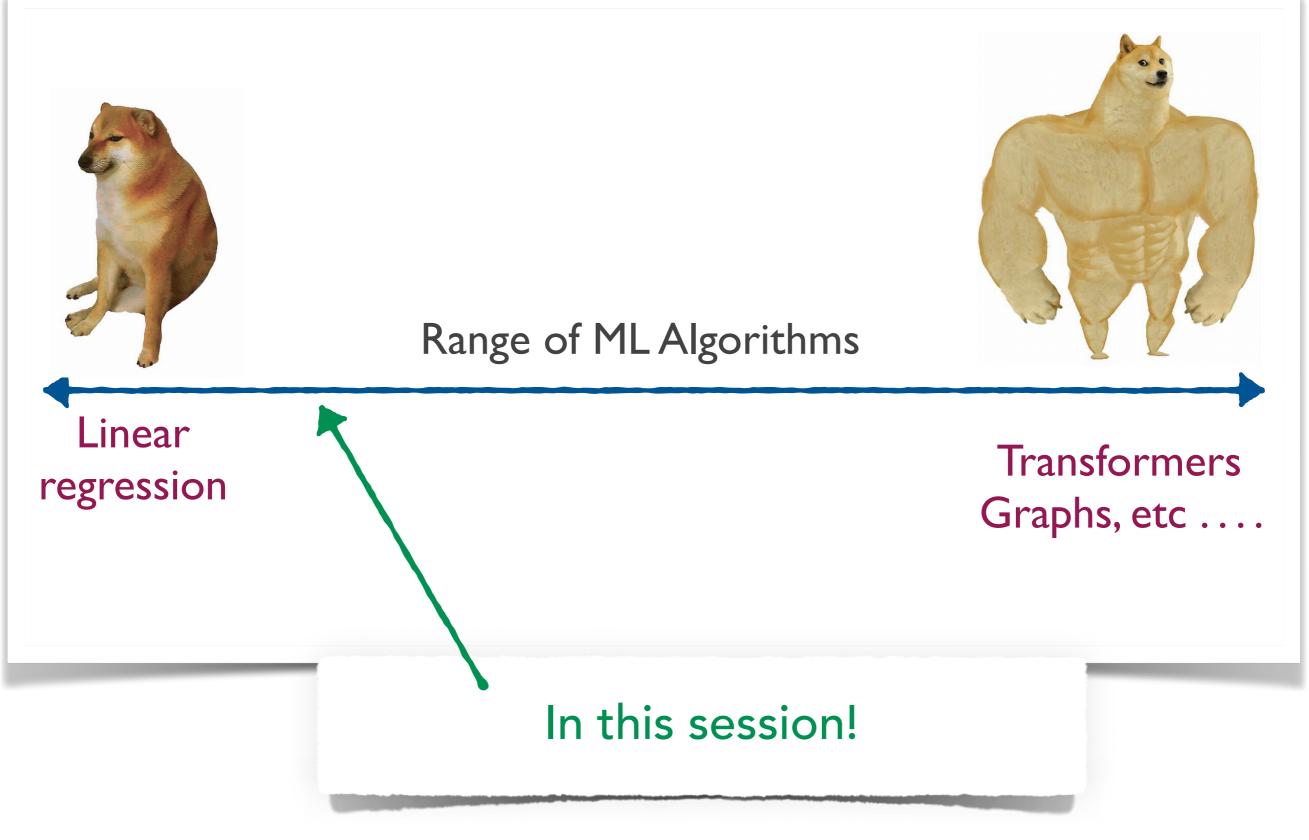


ML Part 2: Intro to Neural networks

Abhijith Gandrakota

CODAS-HEP 2023 Princeton University, NJ

Lecture adapted from J. Ngadiuba's and M. Kagan's courses

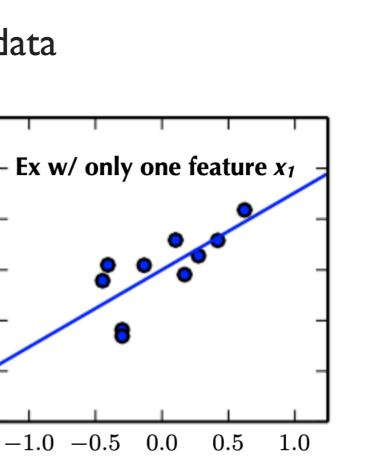


Recap: Linear Regression

- Set of inputs(x_i) & Output(y_i) pairs, which comprises our data
 - Inputs: $x_i \in \mathbb{R}^m$ (*m* is the number of features)
 - Targets: $y_i \in \mathbb{R}^n$ (*n* is the number of features)
- Model that describes it: $\hat{y} = W^T X$
 - Training was to find the best parameters W That describe the data well

• Objective:
$$\mathscr{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h(\mathbf{x}_i; \mathbf{w}))^2$$

• The model here is linear in weight space



З

 $\mathbf{2}$

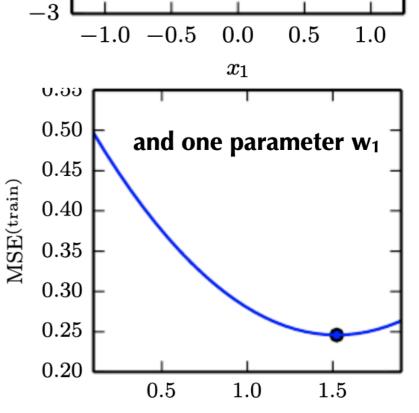
1

0

 $^{-1}$

-2

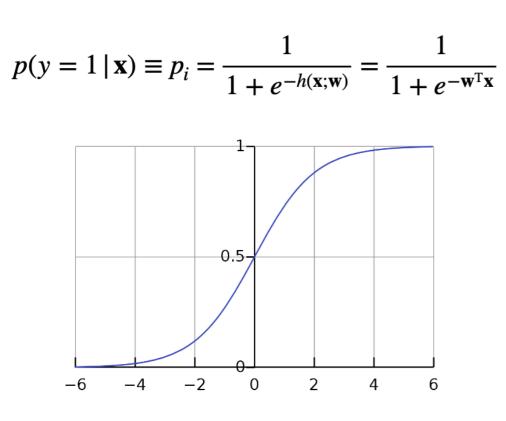
У

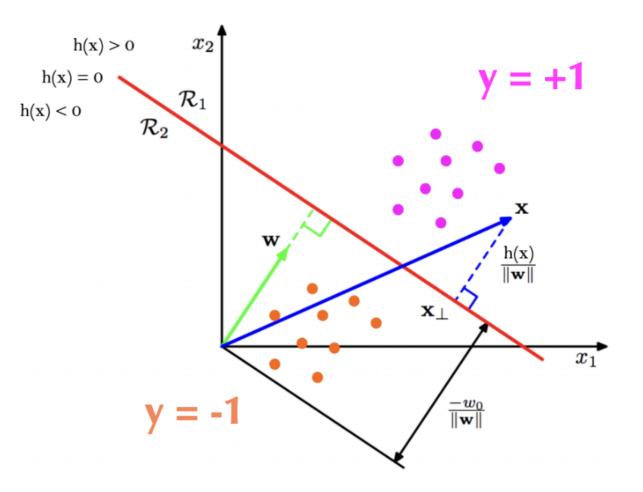


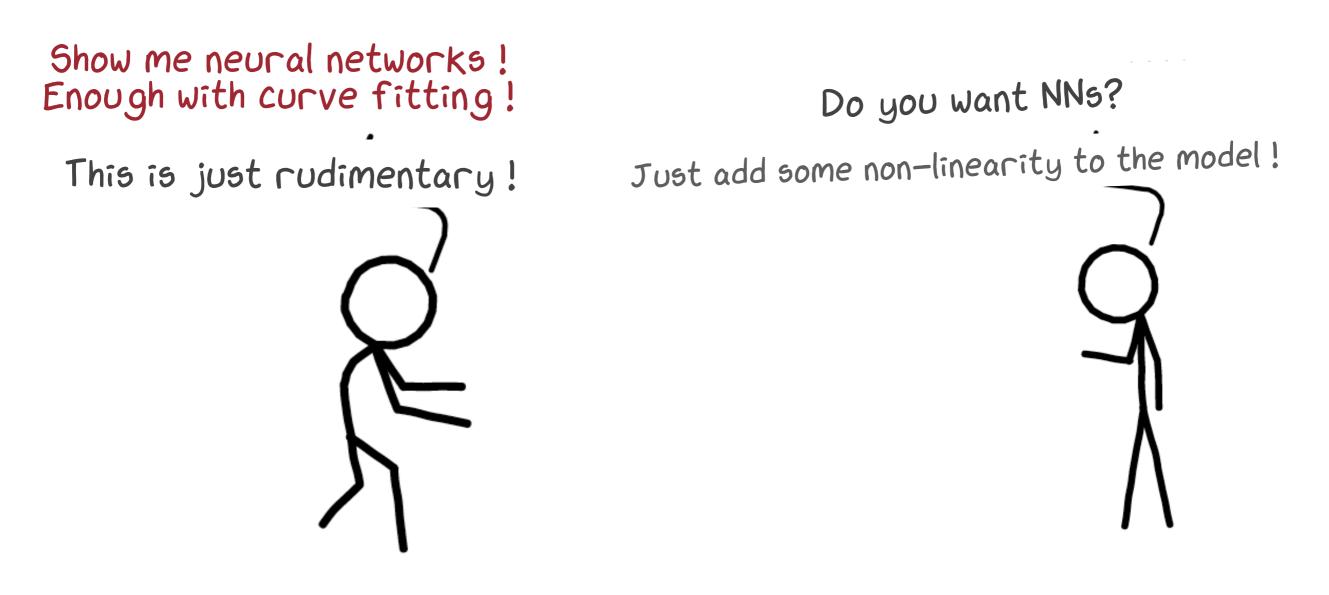
 w_1

Recap: Logistic Regression

- Set of inputs(x_i) & Output(y_i) pairs, which comprises our data
 - Inputs: $x_i \in \mathbb{R}^m$ (*m* is the number of features)
 - Targets: $y_i \in \{0,1\}^n$ (*n* classes)
- Model that describes it: $\hat{y} = W^T X$
 - Map the output to a logistic sigmoid

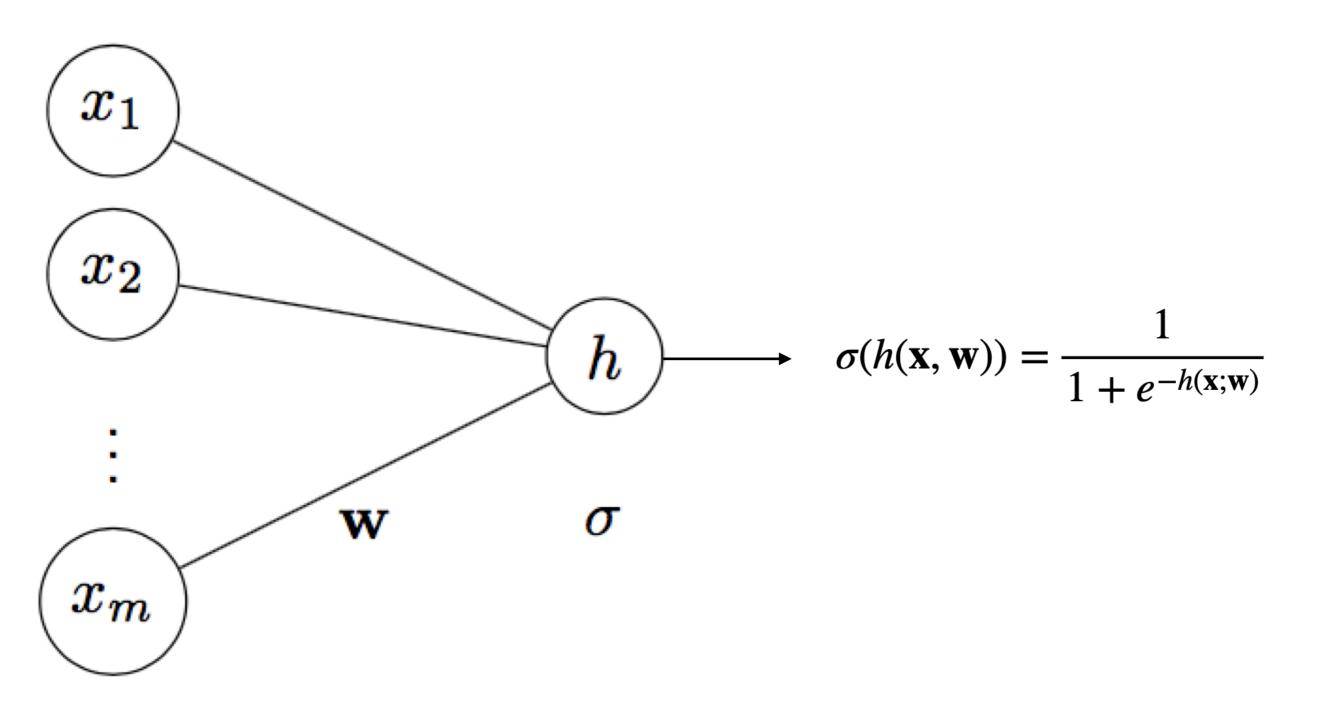






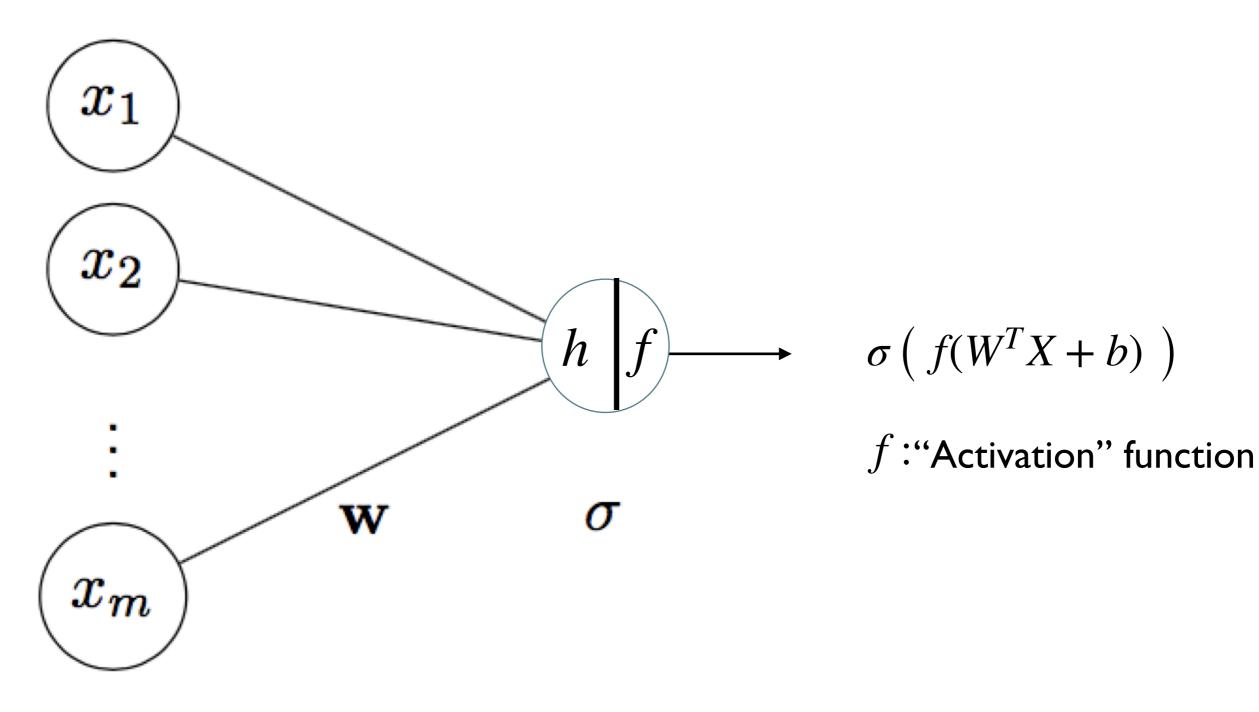
Lets take another look

• We can represent Logistic regression as



Take inspiration from neurons

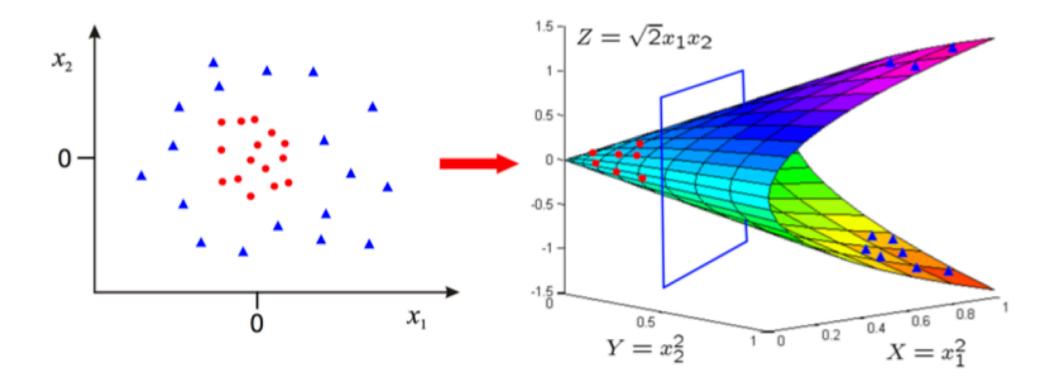
Lets introduce some non-linearity using an additional function



Why care about non-linearity ?

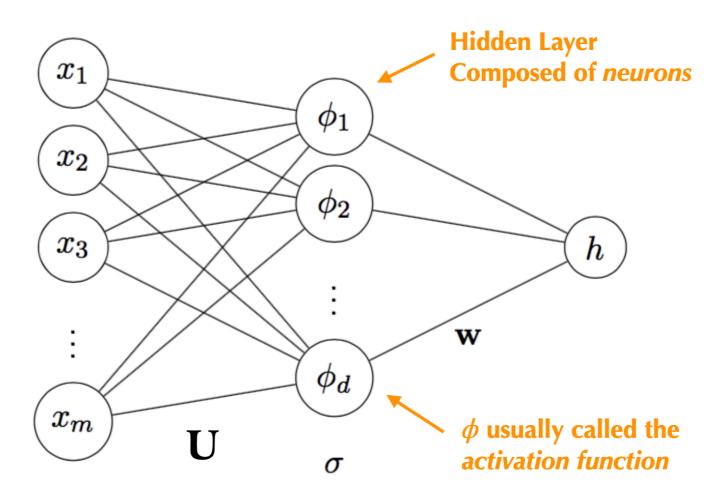
- We might require a non-linear decision boundary
 - How do we pick the set of $\phi(x)$? | $\phi(x) \sim \{x^2, sin(x), ...\}$

$$\Phi: \begin{pmatrix} x_1\\x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2\\x_2^2\\\sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \to \mathbb{R}^3$$



More non-linearity !

- How do we pick the set of basis functions $\phi(x)$?
- We can learn the basis functions data !
 - We can define the basis functions: $\phi(x; U) : \begin{bmatrix} \sigma(\mathbf{u}_1^T \mathbf{x}) \\ \sigma(\mathbf{u}_2^T \mathbf{x}) \\ \vdots \\ \sigma(\mathbf{u}_d^T \mathbf{x}) \end{bmatrix} \mid \mathbb{R}^m \to \mathbb{R}^d$
 - Now the model is $h(x; U, W) = W^T \phi(x; U)$



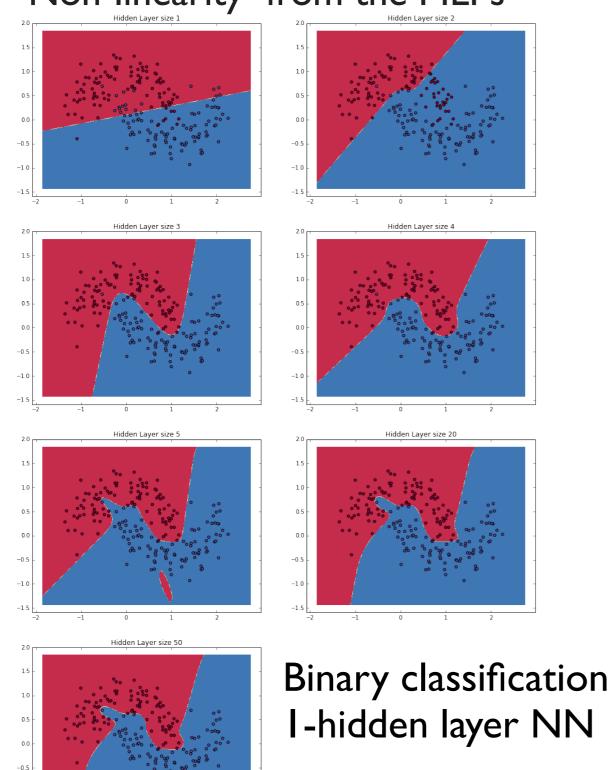
Why stop there ?

‡ Fermilab

- Now we have a "Deep Neural Network"
 - This is what we call it as the *multi layer perceptron* (MLP)

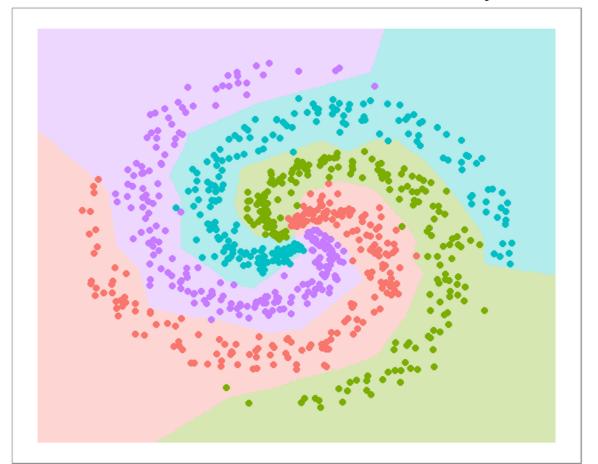


Who do we get ?



-1.0

Neural Network Decision Boundary



4-class classification2-hidden layer NN

[Source]

Universal Approximation Theorem

(Feed-forward) NN with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a space

• Only simple assumptions on activation functions

•

- But no other information are added on how many neurons needed, or how much data!
 - How to find the parameters, given a dataset, to perform this approximation?

Universal Approximation Theorem

(Feed-forward) NN with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a space

• Only simple assumptions on activation functions

•

- But no other information are added on how many neurons needed, or how much data!
 - How to find the parameters, given a dataset, to perform this approximation?

Optimizing the NNs

• To begin with we need to know the loss or objective to minimize

• For classification: Use cross-entropy

$$p_i = p(y_i = 1 | \mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$$
$$L(\mathbf{w}, \mathbf{U}) = -\sum_i y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)$$

• For regression: Use squared error or something similar

$$L(\mathbf{w}, \mathbf{U}) = \frac{1}{2} \sum_{i} (y_i - h(\mathbf{x}_i))^2$$

Optimizing the NNs

• We have loss defined, for MLP with many hidden layers

 $L(\phi^a(...\phi^1(\mathbf{x})))$

 Forward step / propagation : Compute and save the intermediate hidden layer outputs

 $\phi^a(...\phi^1(\mathbf{x}))$

 Backward step / propagation: Calculate the derivative with respect to the. input and the hidden layers

$$\frac{\partial L}{\partial \phi^a} = \sum_j \frac{\partial \phi_j^{(a+1)}}{\partial \phi_j^a} \frac{\partial L}{\partial \phi_j^{(a+1)}}$$

• Compute the parameter gradients:

$$\frac{\partial L}{\partial \mathbf{w}^a} = \sum_j \frac{\partial \phi^a_j}{\partial \mathbf{w}^a} \frac{\partial L}{\partial \phi^a_j}$$

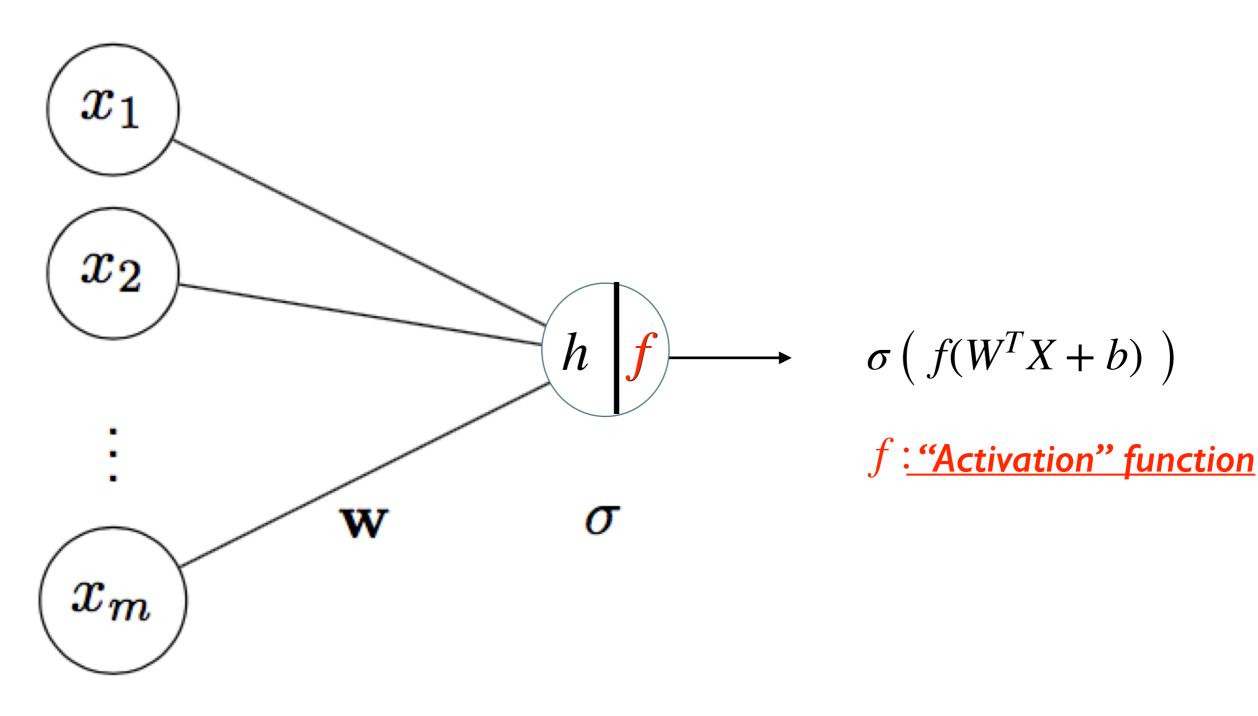
Abhijith Gandrakota

OMG this is just too abstract ! When does the application part? Is it even easy to use in my research? We are getting there

Now let's take another look at everything!

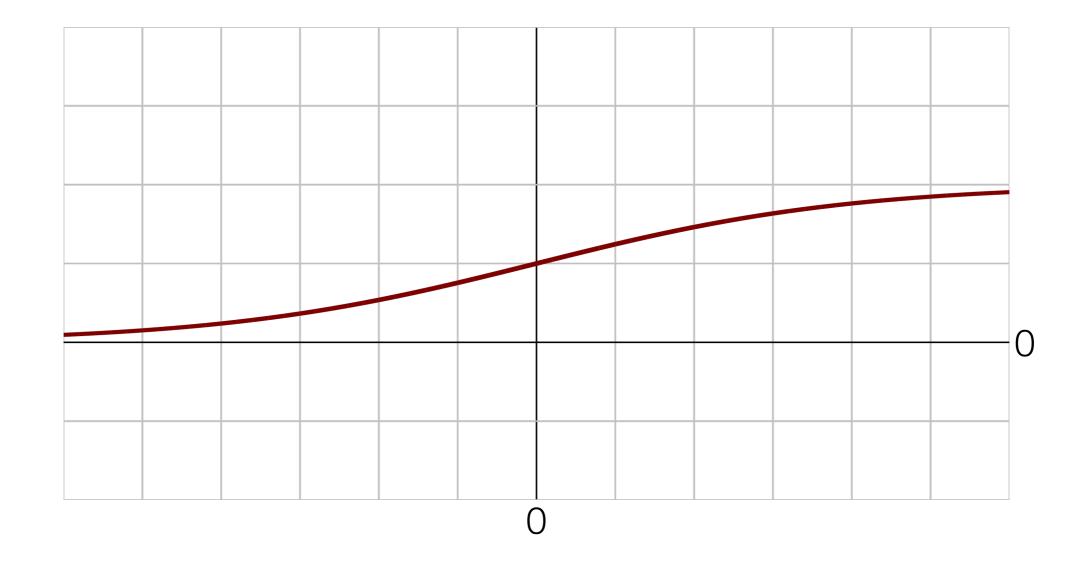
Throwback: Activation functions

Lets introduce some non-linearity using an additional function



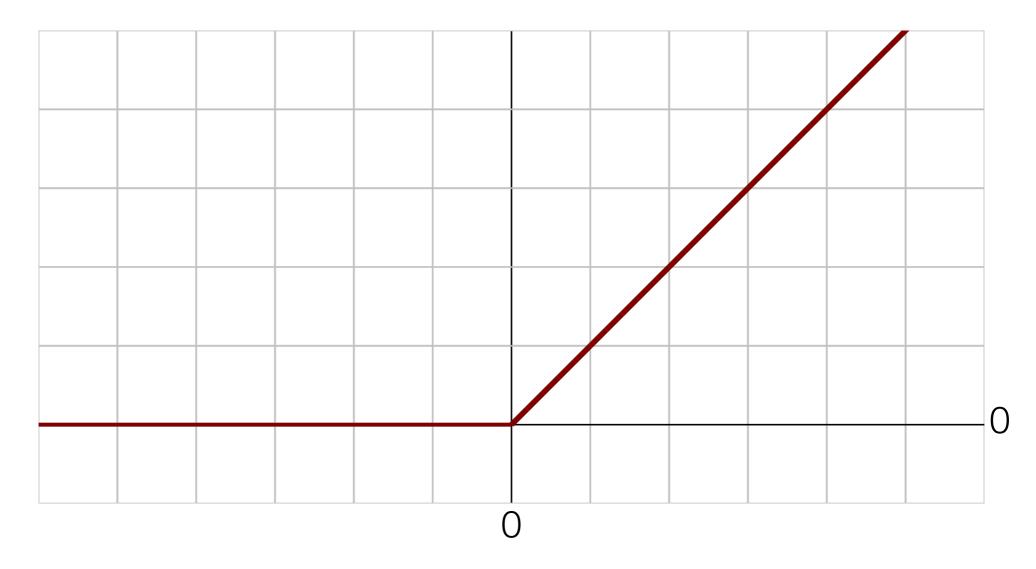
Activation functions

- We could use something like sigmoid as activation (earliest activations)
 - But for values far from 0, gradient vanishes !



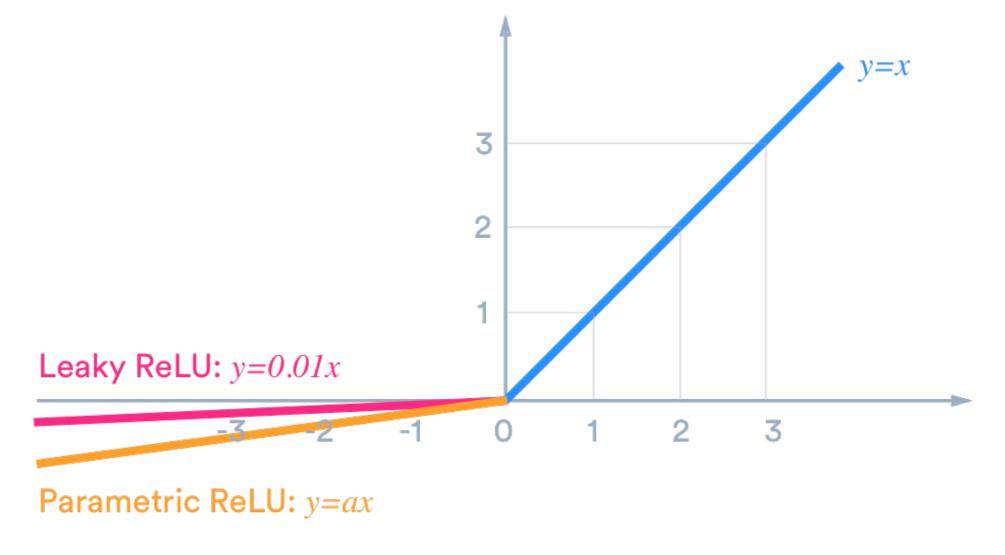
Activation functions

- Alternatively, many modern NNs use Rectified Linear Unit (ReLU)
 - Gradient at 0 is set to 1
 - Gradient ~I for all positive values, but vanishes for all negative values
 - Useful to induce sparsity in the network !

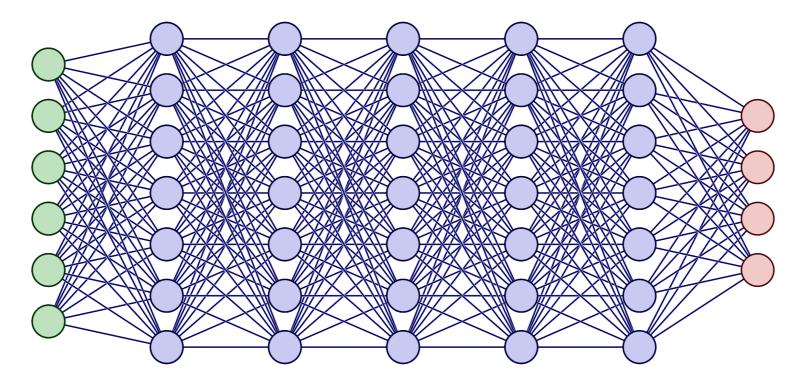


Activation functions

- Sometimes, with bad initialization ReLU can make all of neurons "dead" in the network
 - We could have too much sparsity
- · We mitigate this problem with a "Leaky ReLU"



When to use MLPs ?

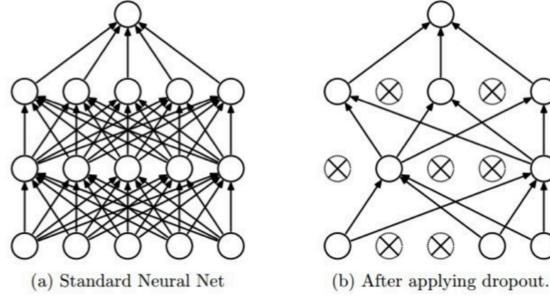


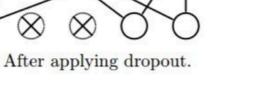
- MLPs: A very generalized way to look at *patterns* in data
 - Not efficient is there is inherent structure that we can use. [e.g: Images]
- Best for distilled inputs or engineered inputs: High-Level features
 - Given sub-structure variables, identifying the jet source
 - Regress the metallicity of the stars from the

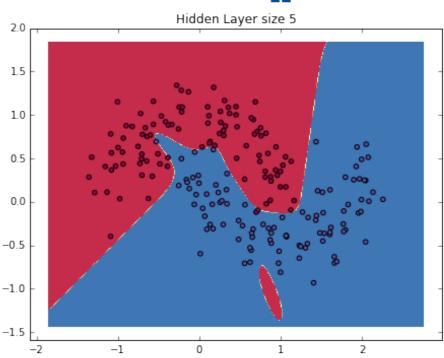
Fermilab

Regularization

- DNNs can easily overfit the data ! •
- We can regularize the network to avoid this problem
- Approach I: L2 regularization
 - Add $||W^2||$ to loss function, avoid large weights saturating network
- Approach II: Drop out / Randomly kill fraction of the nodes during training







Iterating over the datasets

- We have to perform optimization of DNNs until they converge
 - How do we do it with limited dataset ?

- We splits the dataset in chunks / batches
 - Compute loss and update the weights with each batch
 - Small batch size results in faster computation but noisy training
 - Large batch size demands more memory, results in sharper gradients

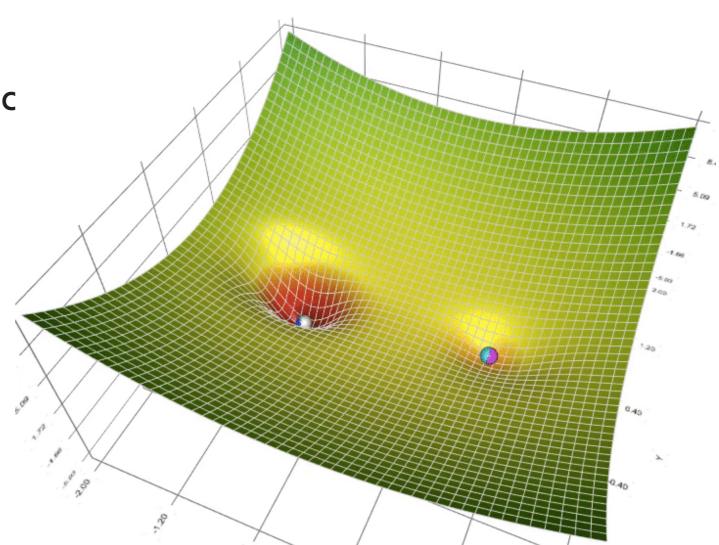
• At the end of one training cycle / epochs, we repeat the process multiple times on the dataset until it reaches convergence

Gradient descent in DNNs

• In training of NNs, we optimize the model paper meters at end of each batch

- So in this case we use the Stochastic Gradient Descent
 - Reduces the very high computational burden

- The most widely adapted method is called *ADAM*
 - Uses momentum fraction of the previous update is added to the current
 - Helps achieve faster convergence of the network



Best practices for best performance

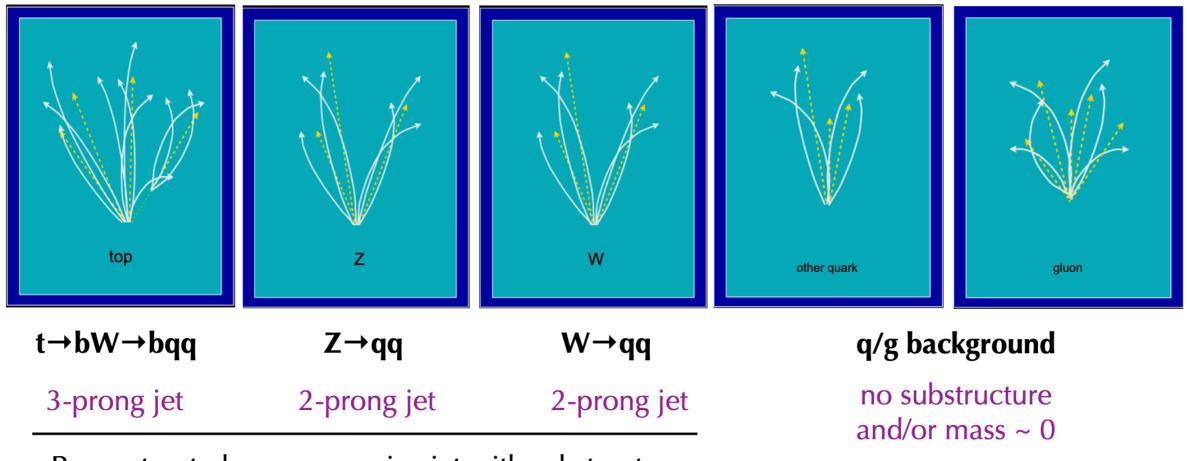
- Make sure that data has no nan / inf or any unphysical values
 - Many way to take care of them !
- For better classification, standardize the input dataset
 - Typically good for the input features to have $\mu \sim 0, \quad \sigma \sim 1$
 - Backpropagation and activation function don't explicitly require it
 - Helps for a faster and better convergence

- Check performance and overfitting w/ validation dataset at end of each epoch
- Perform training with multiple seeds, ensure you reach a robust minimum

Abhijith Gandrakota

Exercise problem

- Identification of jets arising from hadronization of boosted W/Z/H/top
 - A key and important task in high energy physics
 - Analytical sub-structure(s) variables contain information about hadronization
 - We are using MLPs to approximate $f(S) \rightarrow \text{Jet Flavor}$



Reconstructed as one massive jet with substructure

Training dataset

- Input:
 - Various substructure variables of jets
- Objective:
 - Tagging the origin of the jet
- Explore the dataset and get the best performance possible !

Tools for ML

K Keras

O PyTorch

PyTorch Lightning

- Easy to get started
- Best for simple operations
- Lot of Built-in Fn & documentation
- Hard to customize

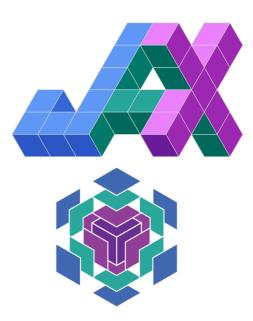
- Also has has lot of libraries
- Very easy to customize
- Needs more lines of code compared to Keras
- Memory efficient

- Extremely versatile
- Can do beyond NNs, use it like accelerated numpy
- Performes Autograd

Tools for ML

- Easy to get started
- Best for simple operations
- Lot of Built-in Fn & documentation
- Hard to customize

O PyTorch



- Also has has lot of libraries
- Very easy to customize
- Needs more lines of code compared to Keras
- Memory efficient

- Extremely versatile
- Can do beyond NNs, use it like accelerated numpy
- Performes Autograd

What to do ?

• Identify the best features possible for this task

• Optimize the hyper parameters: learning rate, batch size, Droup out

• Change the architecture, make the network deeper and wider

- Can you plot Signal vs BKG ROC curves ?
 - QCD [Quark/gluon jets] is the background
- Can you look up TF/Keras API and implement weight initialization ?

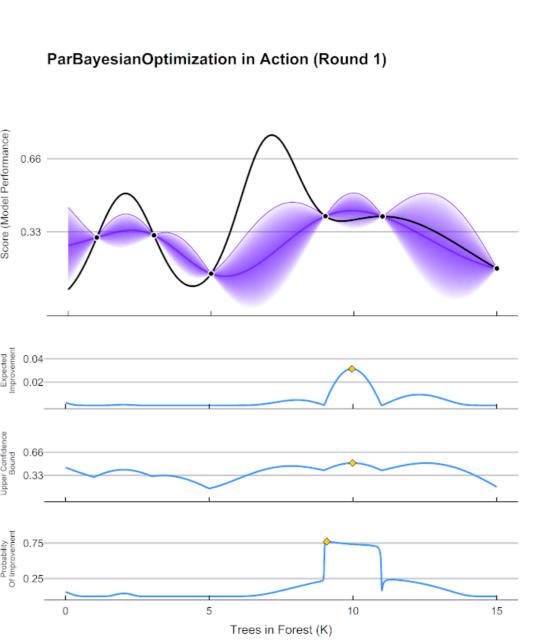
- Try implementing the callbacks in the network.
 - Reduces the learning rate when the model is getting saturated
 - Stop the training before the model overfits the data

• Refer to Keras API and implement them.

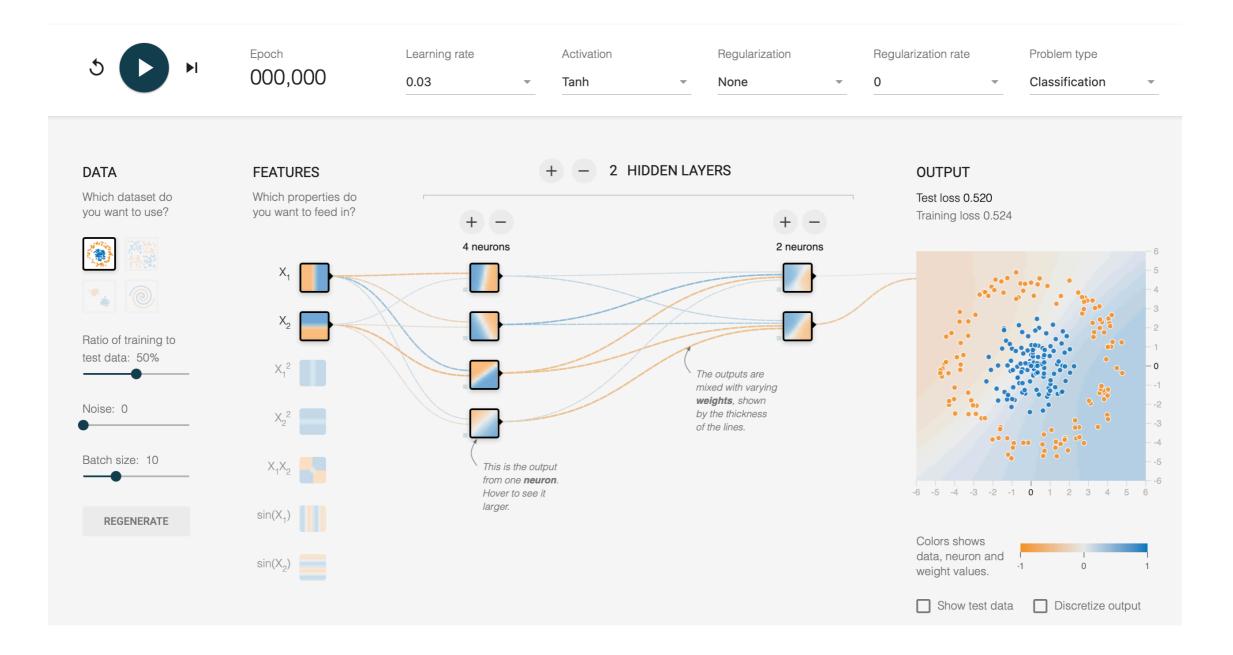
• Has it improved in faster convergence ?

Bayesian optimization

- In a NN / model optimization, we are extremizing a • objective function / loss
- For a given set of hyper parameters, we have best loss after training
 - Gaussian Process to X (x1,x2,..; hyper-parameters), Y (objective function / loss)
 - From GP prediction, check where we'd have a extrema from this fit w/ some certainty
 - Try that point and repeat !
- We map out the for the *objective function* space of **HPs**
- Try this feature using the Keras Tuner etc ...



Need Intuition ?



Try : playground.tensorflow.org

Logging your experiments

Done with exercises ?

- Can you track your experiments with WandB?
 - Like GitHub, but you NN weights and tracking multiple trainings
 - <u>https://docs.wandb.ai/tutorials</u>
- Log your experiments in the WandB
 - Modify the notebook to use WandB logging API
 - Do you see a preference of hyper parameters
- Launch multiple experiments