
ML Part 2: Intro to Neural networks

Abhijith Gandrakota

1

 Lecture adapted from J. Ngadiuba’s  
and M. Kagan’s courses

CODAS-HEP 2023

Princeton University, NJ



Abhijith Gandrakota 2

 

In this session! 

Linear  
regression Transformers 

Graphs, etc . . . . 

Range of ML Algorithms 
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Recap: Linear Regression
• Set of inputs( ) & Output( ) pairs, which comprises our data

• Inputs:   (  is the number of features)

• Targets:   (  is the number of features) 

• Model that describes it:  

• Training was to find the best parameters  
That describe the data well 

• Objective: 

• The model here is linear in weight space

xi yi

xi ∈ ℝm m

yi ∈ ℝn n

̂y = WT X

W
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Recap: Logistic Regression
• Set of inputs( ) & Output( ) pairs, which comprises our data

• Inputs:   (  is the number of features)

• Targets:   (  classes) 

• Model that describes it:  

• Map the output to a logistic sigmoid 

xi yi

xi ∈ ℝm m

yi ∈ {0,1}n n

̂y = WT X
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Show me neural networks !

Enough with curve fitting !

This is just rudimentary !  

I guess we can talk a little    
about NNs   

NNs are basically high dim curve fitting !
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Show me neural networks !

Enough with curve fitting !

This is just rudimentary !  

Do you want NNs?                

Just add some non-linearity to the model !
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Lets take another look . . . . 
• We can represent Logistic regression as 
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Take inspiration from neurons
• Lets introduce some non-linearity using an additional function
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h | f σ ( f(WT X + b) )
f : “Activation” function
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Why care about non-linearity ?
• We might require a non-linear decision boundary

• How do we pick the set of  ? | ϕ(x) ϕ(x) ∼ {x2, sin(x), . . . }
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More non-linearity !
• How do we pick the set of basis functions  ?

• We can learn the basis functions data !

• We can define the basis functions:               | 

• Now the model is 

ϕ(x)

ϕ(x; U) : ℝm → ℝd

h(x; U, W ) = WTϕ(x; U)
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Why stop there ?
• Now we have a “Deep Neural Network”

• This is what we call it as the multi layer perceptron (MLP)
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Who do we get ?
• Non-linearity  from the MLPs
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[Source]

Binary classification
1-hidden layer NN

4-class classification
2-hidden layer NN

[source]

https://dennybritz.com/posts/wildml/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r
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Universal Approximation Theorem
 
 

(Feed-forward) NN with a single hidden layer containing a finite number of 
neurons can approximate continuous functions arbitrarily well on a space 

 

• Only simple assumptions on activation functions 

• But no other information are added on how many neurons needed, or how 
much data! 

•  How to find the parameters, given a dataset, to perform this approximation?
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Backpropogation !
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Optimizing the NNs
• To begin with we need to know the loss or objective to minimize

• For classification: Use cross-entropy 

• For regression: Use squared error or something similar
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Optimizing the NNs
• We have loss defined, for MLP with many hidden layers 

• Forward step / propagation  : Compute and save the intermediate hidden        
.                                         layer outputs 

• Backward step / propagation:  Calculate the derivative with respect to the.    
.                                            input and the hidden layers

• Compute the parameter gradients:  

16



17

OMG this is just  

too abstract !                   

When does the application part ?


Is it even easy to use in my research ? 



We are getting there . . . .
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Now let’s take another look at everything!
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Throwback: Activation functions
• Lets introduce some non-linearity using an additional function
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h | f σ ( f(WT X + b) )
f : “Activation” function

f
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Activation functions
• We could use something like sigmoid as activation (earliest activations)

• But for values far from 0, gradient vanishes !
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Activation functions
• Alternatively, many modern NNs use Rectified Linear Unit (ReLU)

• Gradient at 0 is set to 1

• Gradient ~1 for all positive values, but vanishes for all negative values

•  Useful to induce sparsity in the network !
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Activation functions
• Sometimes, with bad initialization ReLU can make all of neurons “dead” in the 

network

• We could have too much sparsity  

• We mitigate this problem with a “Leaky ReLU”
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When to use MLPs ?

• MLPs:  A very generalized way to look at patterns in data

• Not efficient is there is inherent structure that we can use.  [ e.g: Images ]

• Best for distilled inputs or engineered inputs: High-Level features 

• Given sub-structure variables, identifying the jet source

• Regress the metallicity of the stars from the 
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Regularization
• DNNs can easily overfit the data !

• We can regularize the network to avoid  
this problem

• Approach 1: L2 regularization

• Add  to loss function, avoid large weights saturating network 

• Approach II: Drop out / Randomly kill fraction of the nodes during training  

∥W2∥

25



Abhijith Gandrakota

Iterating over the datasets
• We have to perform optimization of DNNs until they  converge

• How do we do it with limited dataset ?

• We splits the dataset in chunks / batches

• Compute loss and update the weights with each batch

• Small batch size results in faster computation but noisy training

• Large batch size demands more memory, results in sharper gradients 

• At the end of one training cycle / epochs,  we repeat the process multiple 
times on the dataset until it reaches convergence
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Gradient descent in DNNs
• In training of NNs, we optimize the model paper meters at end of each batch 

 

• So in this case we use the Stochastic  
Gradient Descent

• Reduces the very high  
computational burden  
 

• The most widely adapted method  
is called ADAM

• Uses momentum fraction of the  
previous update is added to the current

• Helps achieve faster convergence of the network
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Best practices for best performance
• Make sure that data has no nan / inf or any unphysical values

• Many way to take care of them ! 

• For better classification, standardize the input dataset

• Typically good for the input features to have  

• Backpropagation and activation function don’t explicitly require it

• Helps for a faster and better convergence

• Check performance and overfitting w/ validation dataset at end of each epoch 

• Perform training with multiple seeds,  ensure you reach a robust minimum 

μ ∼ 0, σ ∼ 1
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Exercise problem
• Identification of jets arising from hadronization of boosted W/Z/H/top

• A key and important task in high energy physics

• Analytical sub-structure(s) variables contain information about hadronization

• We are using MLPs to approximate  Jet Flavorf(S) →
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Training dataset

• Input: 

• Various substructure variables of jets 

• Objective:

• Tagging the origin of the jet 

• Explore the dataset and get the best performance possible !
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Tools for ML

• Easy to get started

• Best for simple 
operations

• Lot of Built-in Fn & 
documentation

• Hard to customize

32

• Also has has lot of 
libraries

• Very easy to customize

• Needs more lines of code 
compared to Keras

• Memory efficient

• Extremely versatile

• Can do beyond NNs, 
use it like accelerated 
numpy

• Performes Autograd

FLAX
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• Also has has lot of 
libraries

• Very easy to customize

• Needs more lines of code 
compared to Keras

• Memory efficient

• Extremely versatile

• Can do beyond NNs, 
use it like accelerated 
numpy

• Performes Autograd
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What to do ?
• Identify the best features possible for this task

• Optimize the hyper parameters: learning rate, batch size, Droup out

• Change the architecture, make the network deeper and wider

• Can you plot Signal vs BKG ROC curves ?

• QCD [Quark/gluon jets] is the background 

• Can you look up TF/Keras API and implement weight initialization ?
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Callbacks

• Try implementing the callbacks in the network. 

• Reduces the learning rate when the model is getting saturated 

• Stop the training before the model overfits the data

• Refer to Keras API and implement them. 
 

• Has it improved in faster convergence ?
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Bayesian optimization
• In a NN / model optimization, we are extremizing a 

objective function / loss

• For a given set of hyper parameters, we have best 
loss after training

• Gaussian Process to X (x1,x2,..; hyper-parameters), 
Y (objective function / loss)

• From GP prediction, check where we’d have a 
extrema from this fit w/ some certainty

• Try that point and repeat ! 

• We map out the for the objective function space of 
HPs

• Try this feature using the Keras Tuner etc . . .
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Need Intuition ?

Try : playground.tensorflow.org
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http://playground.tensorflow.org
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Logging your experiments
• Done with exercises ?

• Can you track your experiments with WandB ?

• Like GitHub, but you NN weights and tracking multiple trainings

• https://docs.wandb.ai/tutorials 

• Log your experiments in the WandB

• Modify the notebook to use WandB logging API

• Do you see a preference of hyper parameters 

• Launch multiple experiments  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https://docs.wandb.ai/tutorials

