
Introduction to Performance Optimization
and Tuning Tools

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 19, 2023

with thanks to Bei Wang, NVIDIA

Goals

2

• Give an overview of what is meant by performance optimization and tuning
• Provide basic guidance on how to understand the performance of a code

using tools
• Provide a starting point for performance optimizations

Performance Tuning: What Is It? Why Do It?

• What is performance tuning?
– The process of improving the efficiency of an application to make better use of a given

hardware resource
– A cycle of identifying bottlenecks, eliminating these where possible, and rechecking

efficiency – usually continued until performance objectives are satisfied
– Writing code informed by one’s understanding of the performance features of the given

hardware (see previous presentations on “What Every Computational Physicist Should
Know About Computer Architecture” and “Vector Parallelism on Multi-Core Processors”)

• Why does performance matter?
– Energy efficiency is becoming increasingly important
– Today’s applications only use a fraction of the machine
– Due to complex architectures, mapping applications onto architectures is hard

3

The Performance Tuning Cycle

prepare

measure

analyzehypothesize

modify

• Choose a workload which is measurable,
representative, static, reproducible, and
quantifiable

• Record code generation, compiler version,
compiler flags, input parameters, core
count, affinity, etc.

• Change only one thing at a
time

• Consider the ease (difficulty)
of implementation

• Keep track of all changes
• Apply regression test to

ensure correctness after
each change

• Remember: fast computing
of a wrong result is
completely irrelevant

4

What Do I Measure?

• Choose metrics which quantify the performance of your code
– Time spent at different levels: whole program, functions, lines of code
– Hardware counters can help you figure out the reasons for slow spots

• What are some easy ways to make time measurements?
– Wrap your executable command in the Linux “time” command

• Get an idea of overall run time: time ./my_exe (or /bin/time ./my_exe)
• No way to zero in on performance bottlenecks

– Insert calls to timers around critical loops/functions
• gettimeofday(), MPI_Wtime(), omp_get_wtime()
• Available in common libraries (system, MPI, OpenMP respectively)
• Good for checking known hotspots in a small code base
• Hard to maintain, require significant a priori knowledge of the code

5

Advantages of Performance Tools

• Performance tools (recommended)
– Collect a lot data with varying granularity, cost and accuracy
– Connect back to the source code (use -g compiler flag)
– Analyze/visualize collected data using the tool
– The learning curve is steep, but you can climb it gradually

• Tools generally work in one of two ways

Sampling
• Records system state at periodic intervals
• Useful to get an overview
• Low and uniform overhead
• Ex. Profiling

Instrumentation
• Records all events
• Provide detailed per event information
• High overhead for request events
• Ex. Tracing

6

Performance Tools Overview

• Basic OS tools
– /bin/time
– perf, gprof, igprof (from HEP)
– valgrind, callgrind

• Hardware counters
– PAPI API & tool set

• Community open source
– HPCToolkit (Rice Univ.)
– TAU (Univ. of Oregon)
– Open|SpeedShop (Krell)

No tool can do everything. Choose the right tool for the right task.

• Commercial products
– Linaro Forge (DDT, MAP)

• Vendor supplied (free)
– Intel Advisor, Intel VTune
– Intel Trace Analyzer and Collector (MPI)
– AMD µProf
– CrayPat
– NVIDIA Nsight Compute (CUDA)
– NVIDIA pgprof (OpenACC)
– AMD Omniprof (ROC)

7

What Can I Learn From Performance Tools?

• Where am I spending my time?
– Find the hotspots

• Is my code memory bound or compute bound?
– Memory bound code has lots of events like these (tracked by hardware counters):

• L1/L2/L3 cache misses
• TLB misses

– Compute bound code has lots of events like these:
• Pipeline stalls not due to memory events
• Type conversions
• Time spent in unvectorized loops

• Is my I/O inefficient?

8

• Scattered memory accesses that constantly bring in new cache lines
– Storing data as an array of structs (AoS) instead of a struct of arrays (SoA)
– Looping through arrays with a large stride

• Mismatched types in assignments

Typical Performance Pitfalls on a Single Node

Registers L1 L2 LLC DRAM

Speed (cycle) 1 ~4 ~10 ~30 ~200

Size < KB ~32KB ~256KB ~35MB 10-100GB

float x=3.14; //bad: 3.14 is a double
float s=sin(x); //bad: sin() is a double
precision function
long v=round(x); //bad: round() takes and
returns double

float x=3.14f; //good: 3.14f is a float
float s=sinf(x); //good: sin() is a single
precision function
long v=lroundf(x); //good: lroundf() takes
float and returns long

More cache lines ⇒
data must be fetched
from more distant
caches, or from RAM

9

Typical Performance Pitfalls: Multithreading

• Load imbalance
• False sharing: when CPUs alter different variables in the same cache line ↓

– Data aren’t really shared, but caches must stay coherent
– Data always travel together in “cache lines” of 64 bytes

• Insufficient parallelism
• Synchronization

– Use private thread storage to avoid synchronization

• Non-optimal memory placement
– Memory is actually allocated on first touch
– Thread that touches first has fastest access

https://software.intel.com/en-us/articles/avoiding-and-
identifying-false-sharing-among-threads

10

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

Linux Tool: perf

• Perf is a performance analyzing tool in Linux
– perf record: measure and save sampling data for a single program

• -g: enable call-graph (callers/callee information)

– perf report: analyze the file generated by perf record, can be flat profile or graph
• -g: enable call-graph (callers/callee information)

– perf stat: measure total event count for a single program
• -e event-name-1,event-name-2: choose from event names provided by perf list

– perf list: list available hardware and software events for measurement

• When compiling the code, use the following flags for easier interpretation
– -g: generate debug symbols needed to annotate source
– -fno-omit-frame-pointer: provide stack chain/backtrace

https://perf.wiki.kernel.org/index.php/Tutorial
https://www.brendangregg.com/perf.html 11

https://perf.wiki.kernel.org/index.php/Tutorial
https://www.brendangregg.com/perf.html

Example: Finding Hot Spots with perf

12

Press “A”

• Compile the code: g++ -g -fno-omit-frame-pointer -O3 -DNAIVE matmul_2D.cpp -o mm_naive.out
• Collect profiling data: perf record -g ./mm_naive.out 500
• Open the result: perf report -g

Example: Counting Cache Misses with perf stat

• The perf list command lists all available CPU
counters
– Check man perf_event_open to see what each

event measures

• The perf stat command instruments and
summarizes selected CPU counters
perf stat -e cpu-cycles,instructions,L1-dcache-
loads,L1-dcache-load-misses ./mm_naive.out 500

– Make changes, see if L1 load misses improve, e.g.

13

Intel Advisor

Two very useful analyses in Intel Advisor will be highlighted:
• Vectorization advisor

– Provide vectorization information from vectorization report
– Identify the hotspots where your efforts pay off the most
– Provide call graph information
– Identify the performance and vectorization issues
– Check memory access pattern, dependencies, more

• Roofline
– How much performance is being left on the table
– Where are the bottlenecks
– Which can be improved
– Which are worth improving

14

Workflow of Vectorization Advisor

15

Survey

Trip Counts

Dependencies Memory Access Patterns

Select loops with potential dependencies
or inefficient memory access patterns

• Survey: find the vectorization
information for loops and provide
suggestions for improvement

• Trip Counts: generate a Roofline
Chart

• Memory Access Patterns (MAP):
see how you access the data

• Dependencies: determine if it is
safe to force vectorization

Advisor Advises You About Performance Issues

16

Roofline Analysis: What Is It?

17

Towards Peak Flop/s: Arithmetic Intensity

• Arithmetic intensity or AI is the number of flops executed by a code divided
by the bytes of memory that are required to perform the computations
– AI is an intrinsic property of the code

• Even a simple stride-1 loop may not get the peak flop/s rate, if its AI is low
– VPU becomes stalled waiting for loads and stores to complete
– Delays become longer as the memory request goes further out in the hierarchy from L1

to L2 (to L3?) to RAM
– Even if the right vectors are in L1 cache, there is limited bandwidth from L1 to registers!

• If the goal is to maximize flop/s, you’ll want to try to improve AI
• Also want threads to work on independent, cache-size chunks of data

– Watch out for false sharing, where 2 threads fight needlessly over a cache line

18

19

Function call overhead

Division – cache does not matter

?

Vector too small

L1 drop off, 32KB

L2 drop off, 256KB

L3 drop off (6MB), too soon?
Output matters, too!

Data taken on a laptop (2.6 GHz, vector width 8):

Effect of AI and Caches on GFLOP/s

Low
to
high
AI

Roofline Analysis Explained

20

Deslippe et al., “Guiding Optimization Using the Roofline Model,”
tutorial presentation at IXPUG2016, Argonne, IL, Sept. 21, 2016.
https://anl.app.box.com/v/IXPUG2016-presentation-29

https://anl.app.box.com/v/IXPUG2016-presentation-29

What Does Roofline Analysis Tell You?

• Roofline analysis is a way of telling whether a piece of code is compute bound
or memory bound
– The “roofline” is a performance ceiling related to hardware characteristics

• The arithmetic intensity or AI (flop/byte) of a code tells you what part of the
roof the code is under
– AI is a software characteristic telling you the extent to which the code is limited by its

need to load and store data from/to memory

• The roofline sets the highest flop/s rate possible for a given piece of code
– If some of your functions fall way below that rate, you may need to investigate why
– It’s possible to show that the AI needed for reaching theoretical peak flop/s (the highest

flat roof) implies that 50% of operands are vector constants, i.e., they are loaded just
once and never leave registers!

21

Intel VTune

• Covers all aspects of execution
– Hotspots
– Processor microarchitecture
– Memory accesses
– Threading
– I/O

• Flexible
– GUI in Linux, Windows and macOS
– Drills down to source code, assembly
– Easy setup, no special compiling

• Shared memory only
– Serial or OpenMP
– MPI, but only within a single node

22

Hotspots Analysis

23

Thread Timelines Showing “Spin and Overhead”

24

CPU Utilization by Threads

25

