Introduction to Performance Optimization
and Tuning Tools

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 19, 2023

Cornell University

Center for Advanced Computing with thanks to Bei Wang, NVIDIA

N
S —7
s’ 2
NE
o",, .0.\9

Goals

* Give an overview of what is meant by performance optimization and tuning

* Provide basic guidance on how to understand the performance of a code
using tools

* Provide a starting point for performance optimizations

Cornell University 5
Center for Advanced Computing

N
S —7
2
N
Ty =5

Performance Tuning: What Is It? Why Do It?

 What is performance tuning?

— The process of improving the efficiency of an application to make better use of a given
hardware resource

— A cycle of identifying bottlenecks, eliminating these where possible, and rechecking
efficiency — usually continued until performance objectives are satisfied

— Writing code informed by one’s understanding of the performance features of the given
hardware (see previous presentations on “What Every Computational Physicist Should
Know About Computer Architecture” and “Vector Parallelism on Multi-Core Processors”)

 Why does performance matter?
— Energy efficiency is becoming increasingly important
— Today’s applications only use a fraction of the machine
— Due to complex architectures, mapping applications onto architectures is hard

[
N
5 —_—

$BR) Cornell University
Q Center for Advanced Computing

The Performance Tuning Cycle

* Change only one thing at a * Choose a workload which is measurable,
time representative, static, reproducible, and
* Consider the ease (difficulty) guantifiable
of implementation e Record code generation, compiler version,
* Keep track of all changes compiler flags, input parameters, core
* Apply regression test to prepare count, affinity, etc.

ensure correctness after
each change

* Remember: fast computing
of a wrong result is

completely irrelevant modify measure

hypothesize analyze

Cornell University
Center for Advanced Computing

N
S —7
s’ 2
NE
o",, .0.\9

What Do | Measure?

* Choose metrics which quantify the performance of your code
— Time spent at different levels: whole program, functions, lines of code
— Hardware counters can help you figure out the reasons for slow spots

* What are some easy ways to make time measurements?

— Wrap your executable command in the Linux “time” command
* Get anidea of overall run time: time ./my exe (or /bin/time ./my exe)
* No way to zero in on performance bottlenecks
— Insert calls to timers around critical loops/functions
 gettimeofday(), MPI_Wtime(), omp get wtime()
* Available in common libraries (system, MPI, OpenMP respectively)
* Good for checking known hotspots in a small code base
* Hard to maintain, require significant a priori knowledge of the code

Cornell University
Center for Advanced Computing

NP
5"4
e8I
e
&,
wwl“.\

Advantages of Performance Tools

* Performance tools (recommended)
— Collect a lot data with varying granularity, cost and accuracy
— Connect back to the source code (use -g compiler flag)
— Analyze/visualize collected data using the tool
— The learning curve is steep, but you can climb it gradually

* Tools generally work in one of two ways

Sampling Instrumentation

* Records system state at periodic intervals * Records all events

e Useful to get an overview * Provide detailed per event information
* Low and uniform overhead * High overhead for request events

* Ex. Profiling * Ex. Tracing

Cornell University
Center for Advanced Computing

NP
5"4
e8I
e
&,
wwl“.\

Performance Tools Overview

e Basic OS tools * Commercial products
— /bin/time — Linaro Forge (DDT, MAP)
— perf, gprof, igprof (from HEP) * Vendor supplied (free)
— valgrind, callgrind — Intel Advisor, Intel VTune
 Hardware counters — Intel Trace Analyzer and Collector (MPI)
— PAPI API & tool set — AMD puProf
« Community open source — CrayPat
— HPCToolkit (Rice Univ.) — NVIDIA Nsight Compute (CUDA)
— TAU (Univ. of Oregon) — NVIDIA pgprof (OpenACC)
— Open|SpeedShop (Krell) — AMD Omniprof (ROC)

No tool can do everything. Choose the right tool for the right task.

Cornell University 7
Center for Advanced Computing

N
3"4
(SR
(G):
&,
4,“”“.‘

What Can | Learn From Performance Tools?

e Where am | spending my time?
— Find the hotspots
* |s my code memory bound or compute bound?

— Memory bound code has lots of events like these (tracked by hardware counters):

e L1/L2/L3 cache misses
* TLB misses

— Compute bound code has lots of events like these:
* Pipeline stalls not due to memory events

* Type conversions
* Time spent in unvectorized loops

* |s my |/O inefficient?

Cornell University
Center for Advanced Computing

N
3"4
5 2
\EE))
2
4't:-n\"\

NP
5"4
e8I
e
&,
wwl“.\

Typical Performance Pitfalls on a Single Node

* Scattered memory accesses that constantly bring in new cache lines

— Storing data as an array of structs (AoS) instead of a struct of arrays (SoA)

— Looping through arrays with a large stride

More cache lines =
data must be fetched
from more distant
caches, or from RAM Size < KB

Speed (cycle) 1

 Mismatched types in assignments

float x=3.14; //bad: 3.14 is a double
float s=sin(x); //bad: sin() is a double
precision function

long v=round(x); //bad: round() takes and
returns double

Cornell University
Center for Advanced Computing

Registers

L1 L2 LLC DRAM
~4 ~10 ~30 ~200
~32KB | ~256KB | “35MB 10-100GB

float x=3.14f; //good: 3.14f is a float
float s=sinf(x); //good: sin() is a single
precision function

long v=Iroundf(x); //good: Iroundf() takes
float and returns long

Typical Performance Pitfalls: Multithreading

e Load imbalance

* False sharing: when CPUs alter different variables in the same cache line {,

— Data aren’t really shared, but caches must stay coherent
— Data always travel together in “cache lines” of 64 bytes

* Insufficient parallelism
* Synchronization
— Use private thread storage to avoid synchronization

* Non-optimal memory placement
— Memory is actually allocated on first touch
— Thread that touches first has fastest access

Thread 0

CPU O

Thread 1

CPU1

Cache Line

Cache Line
5 EEEEEN

A Cache

NI

https://software.intel.com/en-us/articles/avoiding-and-

identifying-false-sharing-among-threads

Cornell University
Center for Advanced Computing

N
3"4
(SR
(G):
&,
4,“”“.‘

10

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

Linux Tool: perf

* Perfis a performance analyzing tool in Linux
— perf record: measure and save sampling data for a single program
* -g: enable call-graph (callers/callee information)

— perf report: analyze the file generated by perf record, can be flat profile or graph
* -g: enable call-graph (callers/callee information)
— perf stat: measure total event count for a single program

e -e event-name-1,event-name-2: choose from event names provided by perf list

— perf list: list available hardware and software events for measurement

* When compiling the code, use the following flags for easier interpretation

— -g: generate debug symbols needed to annotate source
— -fno-omit-frame-pointer: provide stack chain/backtrace

https://perf.wiki.kernel.org/index.php/Tutorial

Cornell University https://www.brendangregg.com/perf.html
Center for Advanced Computing D / / grege / p 11

NP
5"4
e8I
e
&,
4’('_;;\"\

https://perf.wiki.kernel.org/index.php/Tutorial
https://www.brendangregg.com/perf.html

Example: Finding Hot Spots with perf

 Compile the code: g++ -g -fno-omit-frame-pointer -O3 -DNAIVE matmul_2D.cpp -0 mm_naive.out
* Collect profiling data: perf record -g ./mm_naive.out 500
* Open the result: perf report -g e e oD 1 homt beLHera Seet peET o e e Ce (e o0,

Percent __attribute__((noinline)) void init_matrix_2D(double *xA, double %%B, double **C, int matrix_size){
#pragma omp parallel for
for (int i=0; i<matrix_size; i++) {
test %ecx,%ecx
v jle 401558 <init_matrix_2D(doublexk, doublexx, b8
__attribute__((noinline)) void init_matrix_2D(double *%A, double %%B, double %%C, int matrix_size){
Samples: 7K of event 'cycles:uppp', Event count (approx.): 5629336320 B s rex) eax
Children Self Command Shared Object Symbol fgz‘;h ?;:ig'%rbp
+ 99.95% 0.00% mm_naive.out libc-2.17.so [.] __libc_start_main push %rls
+ 99.95% 0.00% mm_naive.out mm_naive.out [.]1 main mowh aaaal M
- 99.69% 99.69% mm_naive.out mm_naive.out [.] compute_naive lea ;xgé%rdir%rax'm,%rsi
. . pus T
__libc_start_main push %rbx
main eVl lea 0x8!,%rax,8),%r13
. — mov %rdi,%ri2
compute_naive Press mov %rdx,%ris
. o « . . su x18,%rs
0.09% 0.09% mm_naive.out mm_nalve.out [.] init_matrix_2D nov rei, ox38(%rbp)
0.06% 0.06% mm_naive.out 1libc-2.17.so [.]1 __random v Rk %ebx
0.06% 0.06% mm_naive.out libc-2.17.so [.1 __memset_sse2 T o izes ey
0.03% 0.03% mm_naive.out [unknown] [.]1 oxffffffff8196cs4e7 CRLIT 12 ((doub1e) xand() 7" (RANDMAX))
0.03% 0.00% mm_naive.out [unknown] [.] 0000000000000000 48: » ;:iiq rondoplt
0.02% 0.02% mm_naive.out 1libc-2.17.so [.] __random_r 55.56 mov (%r12),%rdx
. . cvtsi2sd %eax,%xmm@
0.01% 0.01% mm_naive.out mm_naive.out [.] rand@plt divsd OxGe7 (%rip) %xmmo # 40128 <__dso_handle+0x60>
0.01% 0.01% mm_naive.out 1d-2.17.so [.] do_lookup_x 22.22 movsg[iﬁ]m_"]@'(g‘gzﬂgi‘gb:;ﬂ() J (RAND_MAX))
0.01% 0.01% mm_naive.out libc-2.17.so0 [.] _int_malloc 5> callq randoplt -
0.01% 0.01% mm_naive.out 1libc-2.17.so [.]1 intel_check_word B o) iy
0.00% 0.00% mm_naive.out 1d-2.17.so [.]1 check_match.9523 cvtsg?f]i[%ﬁa;ﬂgxmme
o il[j]=0.0;
0.00% 0.00% mm_naive.out [unknown] [.] 0x00000000000Cc2698 mov (%ri5),%rax
4 - B[i1[jl=((double) rand() / (RAND_MAX));
0.00% 0.00% mm_naive.out 1d-2.17.s0 [.] _dl_sysdep_start dived Bxae7 (Xeip) Xxmme & ioTans ' dso handle+0x60s
0.00% 0.00% mm_naive.out 1d-2.17.so [.]1 dl_main 11.11 movsd %mmd, (Krdx, rbx, 1)
0.00% 0.00% mm_naive.out 1d-2.17.so [.]1 _dl_load_cache_lookup 11.11 mova §0XD, (%rax,%rbx, 1)
0.00% 0.00% mm_naive.out 1d-2.17.so [.] _etext aad (fgtsg%ib; T
0.00% 0.00% mm_naive.out 1d-2.17.so [.1 _dl_map_object cmp %rbx,%r13 o
0.00% 0.00% mm_naive.out 1d-2.17.so [.1 __libc_memalign@plt T soxeapap -matrix-20(doublexk, doublex, 48
0.00% 0.00% mm_naive.out 1d-2.17.so [.] _dl_start_user add $0x8,%rl4
add $0x8,%r15
for (int i=0; i<matrix_size; i++) {
cmp -0x38(%rbp) ,%r12
T jne 4014e0 <init_matrix_2D(doublexk, doublexx, 40
)
Cornell University ' 12

Center for Advanced Computing

Example: Counting Cache Misses with perf stat

List of pre-defined events (to be used in -e):

branch-instructions OR branches [Hardware event] v o o
ik v h / d lists all available CPU
T oraars et * The perf list command lists all available CP
cache-misses [Hardware event]
cache-references [Hardware event]
cpu-cycles OR cycles [Hardware event] Cou nte rs
instructions [Hardware event]
ref-cycles [Hardware event]
aLignnent-faults (software event] — Check man perf event open to see what each
bpf-output [Software event]
context-switches OR cs [Software event]
cpu-clock [Software event] event measures
cpu-migrations OR migrations [Software event]
dummy [Software event] T o
emulation-faults [Software event] o h f d d
[Softwars event] e perf stat commana instruments an
minor-faults [Software event]
page-faults OR faults [Software event] H I d C U
task-clock [Software event] Summa rlzes Se eCte P Counte rS
L1-dcache-load-misses [Hardware cache event] . .
L1-dcache-loads [Hardware cache event] - - - -
L1-dcache-stores [Hardware cache event] perf Stat e Cpu CyClesl InStrUCtlonlel dcaChe
L1-icache-load-misses [Hardware cache event] . .
LLC-Load-nisses (Hardvare cache event] loads,L1-dcache-load-misses ./mm_naive.out 500
LLC-loads . [Hardware cache event] _—
ttg:::g;z;mlsses E:ngiz 2:2:: zzz::% Performance counter stats for './mm_naive.out 500°':
branch-load-misses [Hardware cache event]
branch-loads [Hardware cache event] 5,564,503,540 cpu-cycles
dTLB-load-misses [Hardware cache event] 10,063,662,841 instructions # 1.81 insn per cycle
dTLB-loads) [Hardware cache event] 3,767,490,743 L1-dcache—loads
gtg:::g;z;mlsses En::gxgiz 2:2:: :x:::% 1,475,374,174 Ll1-dcache-load-misses # 39.16% of all Ll-dcache hits
iTLB-load-misses [Hardware cache event]
iTLB-loads [Hardware cache event] 1.691104619 seconds time elapsed
node-load-misses [Hardware cache event]
node-loads [Hardware cache event] . . .
node-store-nisses (Haxdvare cache ovent] — Make changes, see if L1 load misses improve, e.g.
node-stores [Hardware cache event]

Cornell University 13

Center for Advanced Computing

Intel Advisor

Two very useful analyses in Intel Advisor will be highlighted:

* \Vectorization advisor
— Provide vectorization information from vectorization report
— Identify the hotspots where your efforts pay off the most
— Provide call graph information
— ldentify the performance and vectorization issues
— Check memory access pattern, dependencies, more

* Roofline
— How much performance is being left on the table
— Where are the bottlenecks
— Which can be improved
— Which are worth improving

Cornell University 14
5 Center for Advanced Computing

&R Cornell University
5 Center for Advanced Computing

Workflow of Vectorization Advisor

e Survey: find the vectorization
information for loops and provide
suggestions for improvement

* Trip Counts: generate a Roofline
Chart

J Memory Access Patterns (I\/IAP); Select loops with potential dependen?cies
or inefficient memory access patterns
see how you access the data :

* Dependencies: determine if it is
. . Dependencies Memory Access Patterns
safe to force vectorization

15

Advisor Advises You About Performance Issues
Elapsed time: 4.125 [at] R il |~ | FILTER:| Al Modules || All Sources || Loops And Functions [All Threads] |- Jcustomizaviewll o- | | o |

Summary % Survey & Roofline ™ Refinement Reports

INTELADVISOR 2019

3 [=] Function Call Sites and Loops (18 v IPerformance ’ Tlme - Type Why No Vectorization? vectorized L.ot?ps = Ins-truct|on
Q Ssues fIif Timew | Total Time Vecto... | Efficiency Gain ... | VL (V... | Traits
=8 . [loop in MoveParticles at nbody.cpp:76] O .. 4.090s BEE 4.090s BB Vectorized (Body) AVX512 8.47x 16 Appr. Reci
Ml 5 f MoveParticles (] 0.010sl 4.100s Hmm Inlined Function 2-Source P
5 f _start) 0.000s(4.100s EEEEN Function
=G [loop in main at nbody.cpp:55] (] @1 Datatypecon...0.000s! 4.100s I Scalar @ inner loop was already ... Appr. Recip
i[5 f main (] 0.000s! 4.100s HEEEE Function 2-Source Py
4O [loop in main at nbody.cpp:204] (] @1 Datatypecon...0.000s! 4.100s I Scalar & compile time constraint... Divisions; F

Source | Top Down | Code Analytics | Assembly |Q Recommendations | & Why No Vectorization?

All Advisor-det: L ; Possible inefficient memory access
patterns present
Confirm inefficient memory access
patterns

Data type conversions present

Use the smallest data type

Data type conversions present

Use the smallest data type
The source loop contains data types of different widths. To fix: Use the smallest data type that gives the needed precision to use the entire vector register width.

Intel, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Cornell University

Center for Advanced Computing 16

Roofline Analysis: What Is It?

Performance Metrics Summary v

hkQ Cores: 10n 1 socket(s) @~

|

SP.Vector FMA Peati: 205.28 G OPS -

SdO149
o
ul

?

DPgy/ector EMA_Be

:103.31 GFLOPS
SP Vector Add Peak: 104.37 GFLOPS

?
DP_Vector Add Peak: 51.67 GFLOPS

?

Scalar-Add Peak: 6.56 GFLOPS -

FLOP/Byte (Arithmetic Intensity)
T T

0.1 1

10
Physical Cores: 32 o App Threads: 1 o

Cornell University
Center for Advanced Computing

17

Towards Peak Flop/s: Arithmetic Intensity

* Arithmetic intensity or Al is the number of flops executed by a code divided
by the bytes of memory that are required to perform the computations
— Al is an intrinsic property of the code

* Even a simple stride-1 loop may not get the peak flop/s rate, if its Al is low
— VPU becomes stalled waiting for loads and stores to complete

— Delays become longer as the memory request goes further out in the hierarchy from L1
to L2 (to L3?) to RAM

— Even if the right vectors are in L1 cache, there is limited bandwidth from L1 to registers!
* |f the goal is to maximize flop/s, you’ll want to try to improve Al
* Also want threads to work on independent, cache-size chunks of data

— Watch out for false sharing, where 2 threads fight needlessly over a cache line

1)
o
5 —_—

Cornell University s
Q Center for Advanced Computing

N
:’4
b 2
G

o .“.\

Effect of Al and Caches on GFLOP/s

Data taken on a laptop (2.6 GHz, vector width 8):

Gflops

—+— sum2 Low
=& sum3 to

Gflops
(o}

6

Illllllllllllllllllll

=

/XX L1 drop off, 32KB

-+ mul2 high
> mul3 Al

—+— div2
—>¢ div3

L2 drop off, 256KB

Functio

-]

4

3

Illllllllll

2

Vector too small

1

by e
0 U

1

Cornell University
Center for Advanced Computing

¥ \
A +
I' + 1
call overhead 3§ e 3 >\‘

10

+

L3 drop off (6MB), too soon?
Output matters, too!

N +‘K-

i ————— A N———— ~,
-~

Division — cache does not matter

102 10° 10* 10°

10° 107
Narray

19

Roofline Analysis Explained

A Peak FLOPs / sec,
= Attainable ;
2 =min g Az :
g Peak GFlop/s W/FMA) FLOPs / sec Peak Memory 5 Ar lthme.tzc
& & P (no FMA) Bandwidth Intensity
N %
8
5 . : . Total FL.OPs
El & Arithmetic Intensity =
£ % (no FMA, no vectorization) TO fa I the IS
g z ~
Q) g o(1) oJ(NQ
0 c £
|7 s,
S = |E =
< g 3 Arithmet
2 8
: . . & Lattice Dense
Arithmetic Intensity (flops/bytes) scanciiMethods flgeefra
SpMV, (PDEs) ’
BLAS1,2 [BLAS3)

Deslippe et al., “Guiding Optimization Using the Roofline Model,”
tutorial presentation at IXPUG2016, Argonne, IL, Sept. 21, 2016.
_ https://anl.app.box.com/v/IXPUG2016-presentation-29

5 2 Cornell University 50
‘o“ Center for Advanced Computing

https://anl.app.box.com/v/IXPUG2016-presentation-29

What Does Roofline Analysis Tell You?

* Roofline analysis is a way of telling whether a piece of code is compute bound

or memory bound
— The “roofline” is a performance ceiling related to hardware characteristics

* The arithmetic intensity or Al (flop/byte) of a code tells you what part of the
roof the code is under
— Al is a software characteristic telling you the extent to which the code is limited by its
need to load and store data from/to memory
* The roofline sets the highest flop/s rate possible for a given piece of code
— |If some of your functions fall way below that rate, you may need to investigate why

— It’s possible to show that the Al needed for reaching theoretical peak flop/s (the highest
flat roof) implies that 50% of operands are vector constants, i.e., they are loaded just

once and never |leave registers!

[
N
5 —_—

Cornell University 21
Q Center for Advanced Computing

Intel VTune

INTELVTUNE AMPLIFIER 2019

ﬁ HPC Performance Characterization HPC Performance Characterization v @

Analysis Configuration ~ Collection Log Summary =~ Bottom-up

* Covers all aspects of execution
— Hotspots
— Processor microarchitecture

— Memory accesses
— Threading

- 1/0
* Flexible
— GUI in Linux, Windows and macOS
— Drills down to source code, assembly
— Easy setup, no special compiling
* Shared memory only

— Serial or OpenMP
— MPI, but only within a single node

Cornell University
Center for Advanced Computing

Elapsed Time : 3.383s
SP GFLOPS ": 0.000
DP GFLOPS : 2.873
x87 GFLOPS ~: 0.000

Effective CPU Utilization “: 7.3% K
Average Effective CPU Utilization ~: 2.332 out of 32
Serial Time (outside parallel regions) : 0.062s (1.8%)
Parallel Region Time : 3.321s (98.2%)

Estimated Ideal Time *: 1.898s (56.1%)
OpenMP Potential Gain *: 1.423s (42.1%) &
Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have
no load imbalance assuming no runtime overhead.

OpenMP Region
compute_triangularsomp$parallel:4@unknown:46:53

OpenMP Potential Gain (%) OpenMP Region Time
1423sk 42.1% Rk 3.321s

*N/A is applied to non-summable metrics.

Effective CPU Utilization Histogram

Memory Bound “: 33.7% K of Pipeline Slots
Cache Bound " 16.2% of Clockticks
DRAM Bound : 0.6% of Clockticks
NUMA: % of Remote Accesses ~: 0.0%
Bandwidth Utilization Histogram

Vectorization : 0.0% K of Packed FP Operations

Instruction Mix:

SP FLOPs 0.0% of uOps

DP FLOPs “: 22.9% of uOps
Packed “: 0.0% from DP FP
Scalar: 100.0% & from DP FP

x87 FLOPs ~: 0.0% of uOps

Non-FP : 77.1% of uOps

FP Arith/Mem Rd Instr. Ratio -z 0.545

FP Arith/Mem Wr Instr. Ratio : 1.741

Top Loops/Functions with FPU Usage by CPU Time

This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time” 9% of FP Ops” FP Ops: Packed ” FP Ops: Scalar” Vector Instruction Set” Loop Type
[Loop at line 49 in compute_triangularfomp$parallel_for@46] 7.397s 26.8% 0.0% 100.0% & Body

*N/A is applied to non-summable metrics.

22

Hotspots Analysis

ﬁ Hotspots Hotspots by CPU Utilization ~ @ INTEI. VTUNEAMPI.IHER 2019

Analysis Configuration ~ Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Hotspots Insights

Elapsed Time : 3.288s If you see significant hotspots in the Top Hotspots list,
CPU Time @2 12.013s switch to the Bottom-up view for in-depth analysis per
.) function. Otherwise, use the Caller/Callee view to track
Effective Time 2 21,6585 critical paths for these hotspots.
>) Spin Time 4.355s Explore Additional Insights
> Xplore itional Insig
Overhead Time = 0s Parallelism @ : 7.3% (2.329 out of 32 logical CPUs) &
Instructions Retired: 35,906,000,000 Use & Threading to explore more opportunities to
Microarchitecture Usage “': 24.2% K of Pipeline Slots increase parallelism in your application.
CPIRate 1101k Microarchitecture Usage © : 24.2% K&
Total Thread Count: 4 Use @ Microarchitecture Exploration to explore how
Paused Time = 0s efficiently your application runs on the used hardware.

Vector Register Utilization © : 12.5% &
Use Intel Advisor to learn more on vectorization
T°p HOtSpOtS efficiency of your application.
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall
application performance.

Function Module CPU Time
compute_triangularSomp$parallel_for@46 cmpTBtS‘angular_omp_l 7.247s

. . < .

Zlh(‘.ﬁgmﬁéaig (bom)1>src_kmp_barner_cpp_38a91946.._kmp_wan_template kmp_flag_6 libiomp5.s0 4.3055 R
func@Ooxffffffffs1775db9 vmlinux 0.085s
func@Ooxffffffff81775c70 vmlinux 0.060s
kmp_flag_native<unsigned long long>::get libiomp5.so 0.045s

*N/A i applied to non-summable metrics.

Effective CPU Utilization Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

1000ms

800ms

Elapsed Time

Target Utilization

600ms 4

400ms

200ms

Oms -

Idle Poor ﬁ
0

Simuitaneously Utilized Logical CPUs

Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

Application Command Line: /home/beiwang/codas_perftools/mm_triangular_omp_icpc.out 1000
Environment Variables: OMP_NUM_THREADS=4

Ilear Nama: haiwanna

Cornell University ’3
Center for Advanced Computing

Thread Timelines Showing

(o

Spin and Overhead”

Cornell University

[Hotspots Hotspots by CPU Utilization ~ @

INTELVTUNE AMPLIFIER 2019

lysis C: i Collection Log y Bottom-up | Caller/Callee Top-down Tree Platform 7.
Grouping:| Function / Call Stack v ‘E E E
CPU Time v <€
. » Spin Time « Overhead Time « B
Function / Call Stack Effective Time by Utilization T Instructions F
Oidie @Poor [Ok @ldeal @ Ov Imbalance or Serial Spinning [~ Igpk Contention | Other | Creation | Scheduling | Reduction | Atomics | Other
1
compute_triangularompparallel_fo| 7.247s (N 0s 0s 0s 0s 0s 0s 0s 0s 30,069,0
) _INTERNAL_25 src_kmp_b 0s 4.305s 0s 0s 0s 0s 0s 0s 0s 4,862,0
func@Ooxffffffffs1775db9 0.085s | 0s 0s 0s 0s 0s 0s 0s 0s
func@Oxfffftfffs1775c70 0.060s | 0s 0s 0s 0s 0s 0s 0s 0s 39,0
kmp_flag_native<unsigned long long 0.045s S 0s 0s 0s 0s 0s 0s 234,0
func@Ooxfffffffs 10f2760 S 0s 0s 0s 0s 0s 0s 0s 13,0
func@Ooxffffffffs10e1e00 0s 0s 0s 0s 0s 0s 0s 0s 52,0
[ipmi_si] 0s 0s 0s 0s 0s 0s 0s 0s
func@Oxffffffffs11024e0 0s 0s 0s 0s 0s 0s 0s 0s
func@Ooxffffffffs10db6a0 0s 0s Os 0s 0s 0s 0s 0s 13,0
func@O0xfffffffs 137ddso 0s 0s 0s 0s 0s 0s 0s 0s
func@O0xffffffff8 100210 0s 0s 0s 0s 0s 0s 0s 0s 39
func@O0xffffffffs 1768650 0s 0s 0s 0s 0s 0s 0s 0s 26.
func@Ooxffffffffs 1034820 0s 0s 0s 0s 0s 0s 0s 0s
func@Ooxffffffffs 10de8co 0s 0s 0s 0s 0s 0s 0s 0s 2
func@Oxfffffffs 176898f 0s 0s 0s 0s 0s 0s 0s 0s
sched_yield 0s 0s 0s | 0.005s 0s 0s 0s 0s 0s
func@Ooxffffffffs 176640 0s 0s 13,0
func@Ooxffffffffe176c5h3 0s 0s
func@Ooxffffffffs176b740 0s 0s
func@Ooxffffffffs1776c1e 0s 0s
func@Oxffffffff8105c36d 0s 0s
func@oxffffffffs1.0aa2e0 0s 0s
func@Oxffffffffs 117360 0s 0s
O: 4 ¥ | Thread v/
§ OMP Master Thread #0 (TID: 137225) v -Runnin_g
£ oMP Worker Thread #1 (TID: 137273) <) MaCPU Time
| @aSpin and Overhead Ti...
OMP Worker Thread #2 (TID: 137274) @ Clocktick Sample
OMP Worker Thread #3 (TID: 137275) ¥ CPU Time
CPU Time
™™"¥) maSpin and Overhead Ti...
CPU Time
FILTER 100.0% o | Process |AnyProcess v | Thread AnyThread v| Module |AnyModule v | | Any Utilization ¥ | | | User +1 v| |Functionsonly v | | Show inline function ¥ | ,

Center for Advanced Computing

24

CPU Utilization by Threads

ﬁ Threading Threading Efficiency v @ INTEI. VTUNE AMP“HER 20]9

Analysis Configuration ~ Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

() Elapsed Time 'z 3.270s

Paused Time = Os

Effective CPU Utilization ~: 11.4% (3.640 out of 32 logical CPUs) k

Effective CPU Utilization Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

1000ms

800ms

Elapsed Time

Target Utilization

600ms

400ms 4

200ms

Oms -

Idle Poor ﬁ
0

Simultaneously Utilized Logical CPUs

) OpenMP Analysis. Collection Time : 3.270
») Serial Time (outside parallel regions) : 0.072s (2.2%)
Parallel Region Time : 3.199s (97.8%)
Estimated Ideal Time ~: 1.854s (56.7%)
OpenMP Potential Gain *: 1.345s (41.1%) &
Top OpenMP Regions by Potential Gain
This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have
no load imbalance assuming no runtime overhead.
OpenMP Region OpenMP Potential Gain (%) OpenMP Region Time
compute_triangularsomp$parallel:4@unknown:46:53 13455 & 411% K 3.199s

*N/A is applied to non-summable metrics.

Total Thread Count: 4 &

Inactive Wait Time with poor CPU Utilization ": 0.915s (100.0% from Inactive Wait Time)
Inactive Sync Wait Time : 0.901s
Preemption Wait Time *: 0.014s
-) Top functions by Inactive Wait Time with Poor CPU Utilization.
This section lists the functions sorted by the time spent waiting on synchronization or thread preemption with poor CPU Utilization.

Function Module Inactive Wait Time Inactive Sync Wait Time ' Inactive Sync Wait Count” Preemption Wait Time Preemption Wait Count

pthread_cond_wait libpthread-2.17.s0 0.712s 0.712s 9 0Os 0
__kmp_fork_barrier libiomp5.so 0.187s 0.187s 2 0s 0
syscall libc-2.17.s0 0.007s Os 0 0.007s 31
func@O0xffffffffs176ec40 vmlinux 0.007s 0s 0 0.007s 1
__kmp_affinity_set_init_mask libiomp5.so 0.001s 0.001s 2 0s 0

*N/A is applied to non-summable metrics.

Cornell University 55
Center for Advanced Computing

