
Collaborative Programming
Princeton University

Markdown-based slides available as open source; contributions welcome!

Please open these slides on your laptop as we’ll jump back and forth between the slides and the browser!

Kilian Lieret

https://github.com/klieret/collaborative-programming-github
https://github.com/klieret

Structure of this lecture
1. **Collaboration in the browser**

1. GitHub Gists
2. Creating issues

3. Forking a repository

4. Creating commits
5. Opening pull requests

6. Handling merge conflicts

2. Working with a local repository

3. Learning to love git (showcase of advanced topics)

GitHub Gists

The "gist" interface works more like a pastebin (and is very easy to use!)

Use case:

Embed code snippets in websites that don’t natively support it properly (like medium)

Quick sharing of simple code snippets

However: Gists are not meant for collaboration or larger pieces of work!

 Tasks

1. Go to github.com and click the "+" symbol and select "Gist" or directly go to gist.github.com

2. Create a simple file and publish it

the easiest way to share code on GitHub

https://github.com/
https://gist.github.com/

Let’s explore the history of an open source repository
 Tasks

1. Navigate to https://github.com/klieret/collab-git-playground-codas-hep-23 ("playground repository")

2. Explore the history and find a hidden tiger 🐅 !

https://github.com/klieret/collab-git-playground-codas-hep-23

Let’s open an issue!
 Tasks

1. Please navigate to the playground repository

2. Open an issue with a random feature request

 Bonus tasks

Edit the title & description of your issue

Add a comment mentioning another participant
Use an emoji reaction

Close & reopen your issue

Check for other issues and comment there

 Advanced

Install the gh command line tool

Clone the repository

Use the CL to open an issue

https://cli.github.com/

Forking & committing changes
While you can open issues, you do not have
permissions to directly modify content.

 Tasks

1. Click the fork button. This will create a "copy" of

the whole repository
2. Open the content folder and click Add file >

Create new file

3. Call your file <your gh username>_first and
add a few lines to it

4. Add a commit message and commit

5. Confirm that you see your file & a new commit
 Usually you always want to commit to a separate

branch in this scenario (later!)

 Bonus tasks

Add a second file

Open your previous file and make changes to the
text

 Advanced

Do the same with the gh CLI.
` ` ` `

` `

` `

What did we do?
you/playground

me/playground

Every node is a commit. Every commit points to a parent.

Your fork "branched off" of the original repository: You’re adding additional commits to a parallel reality
Next step: Bringing your commits back to the original repository

Advanced editing

 Tasks

1. Navigate to the playground repository

2. Do one of these:
Press . (opens in same tab),

Press > (opens in new tab)

change the URL from github.com to
github.dev .

3. Make some additional changes

4. Commit by clicking on the git tab in the left menu,
adding a message and pressing 'commit & push'

Change back to the previous view by changing from
github.dev back to github.com .

Starting VSCode in the browser` `

` `

` `

` `

` `

` ` ` `

Advanced-er editing with GitHub Codespaces

 Tasks

1. Go back to the repository and open GitHub codespaces:

2. Type echo 'hello world' in the terminal
3. Install stuff: sudo apt-get update && sudo apt-get install fortune && /usr/games/fortune

A full development platform

` `

` `

Creating a PR

 Tasks

If you create new commit on a fork, github will already offer you a button to open the PR. Click it!

 Bonus tasks

Mention one of your issues. If you write Closes #<number of your issue> and the PR is merged, the
issue will automatically close.

Check the differences that the PR will create

Comment under one of the differences
Mention another participant @<name>

How to bring our changes back to the original repository

` `

` `

What did we do?

you/playground

me/playground

Someone just merged your pull request!

Branches
If we want to start another PR, we do not need to fork again.

This time however, we first create another branch in our fork.
Use cases:

Working on several independent experimental features

Not all of your PRs might be merged!
Branches are cheap and flexible, always use them!

you/playground

me/playground

main

another
branch

Forks vs Branches
A fork copies the entire repository:

Similar to copying the entire local project folder (including your .git repository)
If the original repository is deleted, your fork persists

You own your fork and have every permission there

A branch belongs to its repository and only tracks certain changes
Branches are cheap and easy, forks are expensive

If you have write permissions for a repository you do not usually need/want to fork it

If you need to fork, fork once and then use branches

` `

Branches
1. Add another file content/<your gh

username>_second

2. Select Create a new branch for this commit

and start a pull request

3. Give your branch a reasonable name (whitespace
discouraged)

4. Commit!

5. Create another PR to either:
Your neighbor’s main branch

The original repository (klieret/...)

Your own main branch
6. If you want to do the bonus exercises, mark

your PR as `draft`

7. If you receive a PR, merge it (unless it’s a draft)

 Bonus task: Adding additional commits to a PR

5. Go back to the default view of your repository and

verify that you now have multiple branches
6. Select your new branch

7. Modify your just created file and create a new

commit on the same branch
8. Check that your PR has been updated by this new

commit

9. Remove draft status and ask repository owner
to review + merge

 Bonus task: Go crazy!

Commit to various branches, create PRs between your
branches or to your neighbors branches.

`

`

`

`

` `

` `

` `

` `

Merge conflicts

animal =
None

animal =
cat

animal=
dog

source

https://devrant.com/rants/2183113/indeed-a-great-merge-conflict-unfortunately-this-cant-be-resolved-in-an-ide-also

Merge conflicts
 Please follow these instructions precisely!

1. Go to your fork

2. Verify that you are on the main branch (yellow)
3. Change something in content/<your gh

username>_first and commit to the branch (!)

merge-conflict (blue)
4. Open a pull request to your own main branch.

Do not merge the PR yet!

5. Change to your main branch again

6. Change the same (!) line to something different

and commit (to main)
7. Check back on your PR, it should warn you about a

conflict

8. Resolve the conflict by determining how both
changes should be reconciled

9. Commit the merge

animal =
None

animal =
cat

animal=
dog

 Bonus tasks: Verify that if you change different
lines with unchanged lines between them, git will do
the merge automatically.

` `

`

`

` `

` `

` `

` `

Part 2: The command line

Let’s get you set up

If you run git for the first time,

If you haven’t done already, generate ssh keys for authentication to github

and add the key to github. Then clone your repository:

Please raise your hand if you have any issues!

Configure name, email and editor

git config --global user.name "John Doe"

git config --global user.email johndoe@example.com

Choose your favorite editor, e.g., nano or vim

git config --global core.editor nano

Requires git 2.28

git config --global init.defaultBranch main

ssh-keygen

follow the instructions

cat ~/.ssh/id_rsa.pub

git clone git@github.com:<your username>/collaborative-programming-github.git

Your first commit

 Bonus tasks:

Create a few more commits (changing the file)

Commit without the -m option and enter your commit message manually

cd collaborative-programming-github

cd content

ls

Get changes that were done on the remote, just in case

git pull

show status of git repository

git status

Create new file

touch <your gh handle>-third.txt

Status is dirty now

git status

Commit file

git commit <your gh handle>-third.txt -a -m "My third file"

Clean again

git status

View past commits (quit with q)

git log

Push to the remote

git push

` `

Changing multiple files in one commit

Hints:

If you want to add everything to the stage: git add . or use the -a option for git commit

If you want to remove a file from the staging area: git reset <file>
If you want to unstage all files: git reset

change all three of your files

git status

multiple files should now show "unstaged changes"

git add <your gh handle>-first.txt <your gh handle>-second.txt

git status

two files "staged"

Commit. Careful: Do not use the -a option

git commit -m "Committing changes to two files"

git status

one file still showing unstaged changes

git add <your gh handle>-third.txt

git commit -m "Commit to one file"

Bring changes to github again

git push

` ` ` `

` `

` `

Branches
git branch my-new-branch

git status

still on branch 'main'

git switch my-new-branch # or: git checkout my-new-branch

git status

Now use your previous knowledge to create some more commits

git status

Make sure that everything is committed

git log

Verify that you have added a view commits

git switch main

Verify that the changes from the other branch are not present

git log

Also our commits aren't present

Merging
Bring the commits from my-new-branch back to main

 Advanced: Add more commits to main before merging to set yourself up for a merge conflict

 Advanced: Manually modify the files to resolve the conflict, then git commit -a .

` ` ` `

On branch main

git merge my-new-branch

Should work directly unless you're doing the advanced exercise

` `

What we didn’t tell you about today
… but what you should really know about

git show : Show details about a commit

git diff : Show differences
git stash : Temporarily put changes aside

.gitignore files: Avoid tracking irrelevant files

git revert : Revert changes
git checkout : Jump through history (or between branches)

…

Take a look at a cheat sheet like this one and make sure you understand all commands listed.

` `

` `

` `

` `

` `

` `

https://about.gitlab.com/images/press/git-cheat-sheet.pdf

Part III: Learning to love git

source

If you are developing software, you almost certainly will use git, no matter where.
Learning to master git is perhaps THE most transferable skill you can hone.

Git would not be so dominant if you could not learn to love it.

https://mukilane.dev/blog/2017/12/25/100daysofcode.html

Your git config
All repository specific settings live in <your repo>/.git/config . Take a look!

You can set global settings in ~/.git/config . Take a look!
Rule of thumb: If you are unsure about the metadata of your repository or about commands that modify it, take a look at your
.git/config .

Defining aliases

Alternatively you can also directly write into your config file.

` `

` `

` `

Type `git c` instead of `git commit`

git config --global alias.c commit

git config --global alias.ca commit -a

...

Use `g` instead of git

alias g="git"

You need to put this definition in your bashrc (or other zshrc etc.) to make it last

Practice, practice, practice
and then some more

This page has very nice suggestions for different levels, all of them using gamification but increasing in
realism.

https://dev.to/pradumnasaraf/want-to-learn-about-git-and-github-in-a-more-fun-way-4o5f

Graphical tools
can give you more intuition

Go here for a curated list of them.

source

https://git-scm.com/downloads/guis
https://en.wikipedia.org/wiki/File:GNOME_gitg.png

Best practices
Licensing Don’t forget to add a license to your repository or nobody can use it! See for example the GitHub docs for more
information.

GitHub actions You can automatically run unit tests or other automated tasks every time you commit (or perform other actions on
GitHub). Take a look at GitHub actions. For simple checks with almost no setup, also take a look at pre-commit and its GitHub
integration.

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://github.com/features/actions
https://pre-commit.com/
https://pre-commit.ci/

Thanks!
You can also practice by improving these very slides! Go to https://github.com/klieret/collaborative-
programming-github. Issues, forks and PRs are very welcome! You only need to speak markdown to help.

https://github.com/klieret/collaborative-programming-github

