Collaborative Programming

Kilian Lieret

Princeton University

Markdown-based slides available as €) open source; contributions welcome!

Please open these slides on your laptop as we’ll jump back and forth between the slides and the browser!


https://github.com/klieret/collaborative-programming-github
https://github.com/klieret

Structure of this lecture

1. €) **Collaboration in the browser**
1. GitHub Gists

Creating issues

Forking a repository

Creating commits

Opening pull requests

o ok w b

Handling merge conflicts

2. Working with a local repository

3. Learning to love git (showcase of advanced topics)



GitHub Gists

the easiest way to share code on GitHub

The "gist" interface works more like a pastebin (and is very easy to use!)

Use case:

= Embed code snippets in websites that don't natively support it properly (like medium)
= Quick sharing of simple code snippets

However: Gists are not meant for collaboration or larger pieces of work!

Tasks

1. Go to github.com and click the "+" symbol and select "Gist" or directly go to gist.github.com

2. Create a simple file and publish it


https://github.com/
https://gist.github.com/

Let's explore the history of an open source repository
Tasks

1. Navigate to https://github.com/klieret/collab-git-playground-codas-hep-23 ("playground repository")

2. Explore the history and find a hidden tiger o !


https://github.com/klieret/collab-git-playground-codas-hep-23

Let's open an issue!
Tasks

1. Please navigate to the playground repository

2. Open an issue with a random feature request

Bonus tasks

Edit the title & description of your issue

Add a comment mentioning another participant
Use an emoji reaction

Close & reopen your issue

Check for other issues and comment there
Advanced

Install the gh command line tool

Clone the repository

Use the CL to open an issue


https://cli.github.com/

Forking & committing changes - gonue tasks

While you can open issues, you do not have = Add asecond file

permissions to directly modify content. _ .
= Open your previous file and make changes to the

TaSkS text

1. Click the fork button. This will create a "copy" of Advanced

the whole repository

‘ Do the same with the gh CLI.

2. Open the "content” folder and click "Add file >

‘Create new file~
3. Call your file "<your gh username>_first and

add a few lines to it
4. Add a commit message and commit

5. Confirm that you see your file & a new commit

Usually you always want to commit to a separate
branch in this scenario (later!)



What did we do?

you/playground

me/playground

=  Every node is a commit. Every commit points to a parent.
= Your fork "branched off" of the original repository: You're adding additional commits to a parallel reality

= Next step: Bringing your commits back to the original repository



Advanced editing

Starting 'VSCode  in the browser

, Tasks

1. Navigate to the playground repository
2. Do one of these:
= Press . (opensinsame tab),
= Press > (opensin new tab)
» change the URL from "github.com™ to
‘github.dev .

3. Make some additional changes

4. Commit by clicking on the git tab in the left menu,

adding a message and pressing 'commit & push'

Change back to the previous view by changing from

"github.dev backto "github.com".

H‘oﬁm

(ORNG]

igithub.dev

EXPLORER

> .github

> figure_sources

> public

@ .gitignore

I' .pre-commit-config.yaml
codespell.txt
LICENSE.txt

3 netlify.toml
package-lock.json
package.json

(@ README.md

———————————————————————————
COLLABORATIVE-PROGRAMMING-GITHUB [GIT).

¥ slides.md
wvercel.json Select ﬁle
Commit
@
> OUTLINE
{%} > TIMELINE

¥ GitHub P main & ®@o0A0

[Preview] README.md X ™ m -

Collaborative Programming with GitHub

PR Welcome Deploy pages |passing

Note < Click here for rendered slides! ==

Warning This is not the playground repository. Pull requests that
improve the lecture are much appreciated though!

Slides to introduce collaborative programming with github and git. The
first part of the slides makes extensive use of the github web interface to
provide students with more intuition and flatten the learning curve. The
second part then turns to the command line.

Note You can use these slides for your teaching, too (see license)!
Contributions are very welcome as well.

Slides originally created for the CoDaS-HEP 2022 school (PDF version of
the slides available in the release).

‘ ‘ Tweet Feedback

Layout: U.S. & 0



Advanced-er editing with GitHub Codespaces

A full development platform

, Tasks

1. Go back to the repository and open GitHub codespaces:

Clone, open or download

Q o O~ Playground
collaborativ
Local Codespaces GitHub
MIT licen:
Codespaces 1 o
" Your workspaces in the cloud A Activity
work iy O stars
& 1watchin
vork No codespaces
% 0 forks
work You don't have any codespaces with this

repository checked out

Create codespace on main
work

Learn more about codespaces...

Codespace usage for this repository is paid for by klieret

2. Type “echo 'hello world'" inthe terminal

3. Install stuff: "sudo apt-get update & sudo apt-get install fortune & /usr/games/fortune’



Creating a PR

How to bring our changes back to the original repository
, Tasks

= |f you create new commit on a fork, github will already offer you a button to open the PR. Click it!

¥ octo-repo had recent pushes less than a minute ago Compare & pull request

Bonus tasks

= Mention one of your issues. If you write "Closes #<number of your issue>  and the PRis merged, the
issue will automatically close.

= Check the differences that the PR will create

= Comment under one of the differences

=  Mention another participant ‘@<name>"



What did we do?

Someone just merged your pull request!

you/playground

me/playground

____________________________________________________________________________________________________________________




Branches
= |f we want to start another PR, we do not need to fork again.
»  This time however, we first create another branch in our fork.
= Use cases:

= Working on several independent experimental features

= Not all of your PRs might be merged!

= Branches are cheap and flexible, always use them!

another
branch

you/playground !

main

me/playground



Forks vs Branches
= A fork copies the entire repository:
= Similar to copying the entire local project folder (including your “.git " repository)
= |f the original repository is deleted, your fork persists
= You own your fork and have every permission there
= A branch belongs to its repository and only tracks certain changes
= Branches are cheap and easy, forks are expensive
» If you have write permissions for a repository you do not usually need/want to fork it

= |f you need to fork, fork once and then use branches



Branches

1.

Add another file “content/<your gh

username>_second

. Select Create a new branch for this commit

and start a pull request

. Give your branch a reasonable name (whitespace

discouraged)

Commit!

. Create another PR to either:

= Your neighbor’s ‘'main" branch
= The original repository ( klieret/ ... 7)
= Your own ‘main” branch
If you want to do the bonus exercises, mark
your PR as ‘draft

If you receive a PR, merge it (unless it's a draft)

Bonus task: Adding additional commits to a PR

5. Go back to the default view of your repository and
verify that you now have multiple branches

6. Select your new branch

7. Modify your just created file and create a new
commit on the same branch

8. Check that your PR has been updated by this new
commit

9. Remove "draft status and ask repository owner

to review + merge

Bonus task: Go crazy!

Commit to various branches, create PRs between your
branches or to your neighbors branches.



Merge conflicts

c Changelog

Automatic merge failed; fix conflicts and
then commit the result.

animal = animal= [
None dog

These ones has scattered repo

® source


https://devrant.com/rants/2183113/indeed-a-great-merge-conflict-unfortunately-this-cant-be-resolved-in-an-ide-also

Merge conflicts

Please follow these instructions precisely!
1. Go to your fork

2. Verify that you are on the "'main" branch (yellow)

3. Change something in "content/<your gh
username>_first and committo the branch (!)
‘merge-conflict (blue)

4. Open a pull request to your own ‘main’ branch.
Do not merge the PR yet!

5. Change to your ‘main” branch again

6. Change the same (!) line to something different
and commit (to ‘main’)

7. Check back on your PR, it should warn you about a
conflict

8. Resolve the conflict by determining how both
changes should be reconciled

9. Commit the merge

animal = animal= 6 ;|£ a

None dog

Bonus tasks: Verify that if you change different
lines with unchanged lines between them, git will do
the merge automatically.



Part 2: The command line

HAD FUN2




Let's get you set up

Configure name, email and editor

If you run git for the first time,

git config --global user.name "John Doe"
git config --global user.email johndoe@example.com

git config --global core.editor nano

git config --global init.defaultBranch main

If you haven't done already, generate ssh keys for authentication to github

ssh-keygen

cat ~/.ssh/id_rsa.pub

and add the key to github. Then clone your repository:

git clone gitagithub.com:<your username>/collaborative-programming-github.git

Please raise your hand if you have any issues!



Your first commit

cd collaborative-programming-github

cd content

1s

git pull

git status

touch <your gh handle>-third.txt

git status

git commit <your gh handle>-third.txt -a -m "My third file"
git status

git log

git push
Bonus tasks:

= Create a few more commits (changing the file)

. Commit without the "-m~ option and enter your commit message manually



Changing multiple files in one commit

git status

git add <your gh handle>—first.txt <your gh handle>-second.txt
git status

git commit -m "Committing changes to two files"

git status

git add <your gh handle>-third.txt
git commit -m "Commit to one file"

git push

Hints:

= |f you want to add everything to the stage: ‘git add . orusethe -a” option for git commit
= |f you want to remove a file from the staging area: "git reset <file>"

= |f you wantto unstage all files: "git reset”



Branches

git branch my-new-branch

git status

# still on branch 'main'

git switch my-new-branch # or: git checkout my-new-branch
git status

# Now use your previous knowledge to create some more commits

git status

# Make sure that everything is committed
git log

# Verify that you have added a view commits

git switch main

# Verify that the changes from the other branch are not present
git log

# Also our commits aren't present



Merging
Bring the commits from “my-new-branch™ back to ‘main’

Advanced: Add more commits to main before merging to set yourself up for a merge conflict

git merge my-new-branch

Advanced: Manually modify the files to resolve the conflict, then "git commit -a.



What we didn't tell you about today

... but what you should really know about

= ‘git show : Show details about a commit

m ‘git diff :Show differences

= ‘git stash :Temporarily put changes aside

= “.gitignore  files: Avoid tracking irrelevant files
= ‘git revert :Revertchanges

= “git checkout : Jump through history (or between branches)

Take a look at a cheat sheet like this one and make sure you understand all commands listed.


https://about.gitlab.com/images/press/git-cheat-sheet.pdf

Part Ill: Learning to love git

18,688 contributions in the last year Contribution settings ~
n Ju A Sep Oct Dec Jan Feb Apr
EEEEN EEEEN EEEEs EEEEs 0 ||

CEEEEEN DT B P P P Py B ] P HE
(1 [ [ ] H EE == H EE =N H EE =R HER
]| | | DO DR DN DRI DD D DRI [ | B |
EEEEN EEEEEEN SEEEEEE 'EEEEEEE EEE N
fEEEEEm AEEEEEEN HEENEENSE 'EENEEEE EEENEN
EEEEN | | | | [ | | | [ EEETEn

Summary of pull requests, issues opened, and commits. Learn how we count contributions. Less BENE More

source

= |f you are developing software, you almost certainly will use git, no matter where.
= Learning to master git is perhaps THE most transferable skill you can hone.

=  Git would not be so dominant if you could not learn to love it.


https://mukilane.dev/blog/2017/12/25/100daysofcode.html

Your git config
= All repository specific settings live in “<your repo>/.git/config . Take a look!
= You can set global settings in "~/.git/config . Take a look!

Rule of thumb: If you are unsure about the metadata of your repository or about commands that modify it, take a look at your

“.git/config .

Defining aliases

git config --global alias.c commit
git config --global alias.ca commit -a

alias g="git"

Alternatively you can also directly write into your config file.



Practice, practice, practice

and then some more

This page has very nice suggestions for different levels, all of them using gamification but increasing in

realism.

Jeoe  mieamcisuanching



https://dev.to/pradumnasaraf/want-to-learn-about-git-and-github-in-a-more-fun-way-4o5f

Graphical tools

can give you more intuition

Go here for a curated list of them.

T‘ gitg (~/) a

O (rcorns Notify changes in commit model repository property Jesse van den Kieboom  Oct 30 2012, 11:05

_ Depend on vala 0.16 Jesse van den Kieboom  Oct 30 2012, 11:06
v master
Fix check for enabling debug mode for diff Jesse van den Kieboom  Oct 29 2012, 17:16

~ Remotes

Merge branch ‘webkit2' Jesse van den Kieboom  Oct 29 2012, 17:00
v origin P Improve performance of diff rendering Jesse van den Kieboom ~ Oct 29 2012, 16:58
master ® Show inspector when running in debug mode Jesse van den Kieboom  Oct 29 2012, 16:57
gnome-3-18 Do not process diff lines for binary deltas Jesse van den Kieboom  Oct 28 2012, 22:54
highlighting Notify repository change Jesse van den Kieboom  Oct 28 2012, 18:25
s1a Bind available/enabled ui element properties Jesse van den Kieboom  Oct 28 2012, 18:25
gnome-3-
Set CLEANFILES for tests Jesse van den Kieboom  Oct 28 2012, 16:55
gnome-3-16
3 Depend on webkit2 1.9.92 Jesse van den Kieboom Oct 28 2012, 16:36
e dash view: show just the basename of the repository bolded Ignacio Casal Quinteiro  Oct 24 2012, 11:04
gnome-3-12 Compression and stripping of resources Ignacio Casal Quinteiro  Oct 23 2012, 13:28
gitg-0-2 Use GResource for icons Ignacio Casal Quinteiro  Oct 23 2012, 13:25
wipltechiv...g/720736 Make the dash view a grid Ignacio Casal Quinteiro  Oct 22 2012, 09:01
WpAecilvLoZ20E Jesse van den Kieboom <jesse vandenkieboom@epfl.ch> Diff against: | edefaf v
1012912012 05:00:05 PM +0100

wip/techliv...g/720734

wip/techliv...g/720886

wipltechiiv...g/720726 | Merge branch ‘webkit2*

Parents:

edefaf. Do not process diff lines for binary deltas
wip/sindhu...ranch-info | d67116: Improve performance of diff rendering

wip/sindhu...ive-rebase

b Tags Expand all 730093400
= -7 configure.ac
- >3 1ibgitg-gtk/Makefile.am

source


https://git-scm.com/downloads/guis
https://en.wikipedia.org/wiki/File:GNOME_gitg.png

Best practices

Licensing Don't forget to add a license to your repository or nobody can use it! See for example the GitHub docs for more

information.

GitHub actions You can automatically run unit tests or other automated tasks every time you commit (or perform other actions on

GitHub). Take a look at GitHub actions. For simple checks with almost no setup, also take a look at pre-commit and its GitHub

integration.


https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://github.com/features/actions
https://pre-commit.com/
https://pre-commit.ci/

Thanks!

You can also practice by improving these very slides! Go to https://github.com/klieret/collaborative-


https://github.com/klieret/collaborative-programming-github

