Parallelized Track Reconstruction for the
LHC: the mkFit Project

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 21, 2023

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

0 N O U s WD RE

Conclusions and future directions

, Center for Advanced Computing .

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

©® N O Uk WLWHNRE

Conclusions and future directions

m Center for Advanced Computing 3

High Performance Computing in High Energy Physics

Collaborators

K. McDermott, G. Niendorf,

M. Reid, D. Riley, P. Wittich
(Cornell);

S. Berkman, G. Cerati,

P. Gartung, M. Kortelainen
(Fermilab);

B. Wang (NVIDIA);

P. EImer (Princeton);

L. Giannini, S. Krutelyoy,

M. Masciovecchio,

M. Tadel, E. Vourliotis,

F. Wirthwein, A. Yagil
(UCSD);

B. Gravelle, B. Norris
(U. Oregon);

A. R. Hall (USNA).

Photo: CMS detector, LHC, CERN

I) Center for Advanced Computing Key reference: S. Lantz et al., J. Inst. 15 P09030 (2020)

https://doi.org/10.1088/1748-0221/15/09/P09030

- =y

LHC: The Super Collider ™=

|

T

)
4 —

3)

= g,
L5 o

The Compact Muon Solenoid
(CMS) is one of the detectors
in the LHC (actual photo) —1

~—

The Large Hadron Collider
repeatedly smashes beams
of protons into each other
as they go around aring 17
miles in circumference at
nearly the speed of light

Collision Energy Becomes Particle Masses: E=mc?

/f/, .

ataeeorded: 2010-Jul-08.02:25:58.839811 GMT(04:25:68 CEST

s

\"’»\UNW‘?
S/ 2 :
?) Center for Advanced Computing

» S
DDDDD

Higgs Discovery @ LHC

B'g news On .Iu’y 4, 2012! Home | News & Comment \ Research | Careers & Jobs | Current Issue \ Archive | Audio & Video | For 4

DT YD I

Fair & Balanced
Physicists declare victory in Higgs hunt

Researchers must now pin down the precise identity of their new particle.

Politics U.S. Opinion

HOME PAGE | TODAY'S PAPER | VIDEO | MOST POPULAR 1 U.S. Edition v

Science Home Archaeology Air& Space PlanetE

The New YJork Eimes Geoff Brumfiel

Science BREAKINGNEWS ISRAEL SAYSIT S DA 2002
%i*-:;guardian WORLD US. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

Physicists announced today that they have seen a

i g ENVIRONMENT SPACE & COSMOS clear signal of a Higgs boson — a key part of the
News US World Sports | Comment | Culture Business Enviro mechanism that gives all particles their masses.
. .
[Nows) Siene) Figg boson The el particle:
— e e USIve a IC e' Two independent experiments reported their

Physicists are set to announce the latest results from the Large
Hadron Collider (LHC), but what exactly is the Higgs boson, why
do people call it the 'god particle' and what would its discovery
mean for physics?

What is the Higgs boson? Physicists Find Elusive Particle Seen as Key to Universe nggs Bhair
R SRR e T 2 = - - -

lan Sample and James Randerson
guardian.co.uk, Friday 29 June 2012 09.35 EDT

cientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson

By DENNIS OVERBYE

Published: July 4, 2012 | i@ 122 Comments
ASPEN, Colo. — Signaling a likely end to one of the longest, most FACEBOOK
expensive searches in the history of science, physicists said ¥ TWITTER

Big Data Challenge

proton - (anti)proton cross sections

* 40 million collisions a second o SRR TR L TR ke
10°F ot . 3 L)
* Most are boring 0 b Tevaon LHC. 11
— Dropped within 3 us "o E ' L= 1"
LN 1 40T,
* 0.5% are interesting 10t b AR PYT =
C /] (&)
— Worthy of reconstruction... Ll T 1% %
) Ui ? 3 10° W
* Higgs events: super rare Sl 1 g
: :] O
16 e 6 Wi b S P KT N
— 10-° collisions = 10° Higgs § :: 3
_ 0 e =
Maybe 1% of these are found /// Epy
e Ultimate “needle in a haystack” = w3
: : : | @ gm
* “Big Data” since before it was cool 1
10° | : ; : — 10°
[Wus2012 http://www.hep.ph.ic.ac.uk/~wstirlin/plbts/plots.html]
107 il T —1 107

0.1 1 10
, Center for Advanced Computing E (TeV) .

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

CMS: Like a Fast Camera for Identifying Particles

I | | | 1 | | |
Oom m 2m im 4m 5m 6m /m
Key:
Muon .
Positron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

. Electromagnetic
}_ll ‘ ' Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

D Bamaey, CERN, Febricuy 2004

Particles interact differently, so CMS is a detector with different layers to
identify the decay remnants of Higgs bosons and other unstable particles

, Center for Advanced Computing 9

CMS Is About to Get Busier

i ZAVE/Z.) L YA Y b SN ARG V. a N AN N, SN

=

> 7

e By 2025 2029, the instantaneous luminosity of the LHC will increase by
a factor of 2.5, transitioning to the High Luminosity LHC (HL-LHC)

e Significant increase in number of interactions per bunch crossing, i.e.,
“pile-up”, on the order of 140-200 interactions per event

m Center for Advanced Computing 0

Reconstruction Will Soon Run Into Trouble

[CMS Simulation, ys = 13 TeV, it + PU, BX=25ns

* Higher detector occupancy puts a strain on
read-out, selection, and event reconstruction

60— —=— Full Reco —e— Track Reco

50~ PU140

Time/Event [a.u.]

* Aslow step in reconstruction is combining
~10° energy deposits (“hits”) in the tracker to
form charged-particle trajectories — tracking

* Tracking is typically the biggest contributor to
reconstruction time per event in CMS, and for
high pile-up, it diverges

Luminosity [10** cm2 s71]

 We can no longer rely on Moore’s Law scaling of CPU frequency to keep up
with growth in reconstruction time — we need a new solution

* Can we make the tracking algorithm concurrent to gain speed?

,\ Center for Advanced Computing 11

Overview of CPU Speed and Complexity Trends

48 Years of Microprocessor Trend Data

T T | T |
7 Lt
107 | “discontinuity in ~2005 # X% Transistors
108 | | o il | (thousands)
NRLYS Yauia :
10° k- #ﬁh o/ Single-Thread
250 g S ¢ < Performance
0t L T peldyp o° J_(SpecINT x 10
“:Af ﬁ" 'l*l“‘ ra"y Frequency (MHz)
108 b AA A‘A..c. II m Bg]
A el = . ¢ Typical Power
10° | R - .;;H';gw'vv""f giﬂ
A [} vV _w vV vy
' I R T a4 2 A .g.‘.'§< Number of
100 & 4. L R Logical Cores
0 A m v v v vY vy t” >0¢
10 — ‘ L 2 * 2 ‘ GO O WO VNN SO > o —
| | | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp GitHub link

, Center for Advanced Computing

12

https://github.com/karlrupp/microprocessor-trend-data/blob/master/48yrs/48-years-processor-trend.png

Two Types of Intra-Processor Parallelism

e Vectorization (data parallelism)
— “Lock step” Instruction Level Parallelization: SIMD = Single Instruction, Multiple Data

— Requires minimization of branching and efficient memory utilization
— It’s all about finding simultaneous operations, on well-aligned data

Multithreading (task parallelism)
— OpenMP, Threading Building Blocks, Pthreads, etc., to use multiple cores
— It’s all about sharing work and balancing the load, with minimal overhead

* To occupy a processor fully, both types need to be identified and addressed
— Vectorized loops (not the whole code) gain 8x or 16x performance on CPUs
— Multithreading offers a further Mx speedup on M cores

Prior tracking algorithms did not do this at the event level—can we? (How?)

,\ Center for Advanced Computing 13

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

X N O Uk WDNhPE

Conclusions and future directions

m Center for Advanced Computing "

History of the Trackreco/mkFit Project

e 2015 NSF PIF (Physics at the Information Frontier) grant: “Particle Tracking at
High Luminosity on Heterogeneous, Parallel Processor Architectures”
— Cornell, Princeton, UCSD > all CMS
— HL-LHC: high pile-up, 200 interactions per bunch crossing

— New (at the time) computer architectures: MIC / AVX-512, GPUs, ARM-64
— Goal: make tracking software more general and faster!

* Proposal: enhance the parallelism of existing, production tracking algorithms
based on Kalman Filter:
— Keep well-known physics performance — efficiencies, fake rates

— Make code amenable to vectorization and multithreading, through new data structures
and generalized algorithms

,\ Center for Advanced Computing 15

Why Kalman Filter for Particle Tracking?

science

..Vs. real
materials

,\ Center for Advanced Computing

fiction...

Naively, each particle’s trajectory is
described by a single helix

Forget it
— Non-uniform B field

— Scattering
— Energy loss

Trajectory is only locally helical

Kalman Filter allows us to take these
effects into account, while preserving
a locally smooth trajectory

16

What Does the Tracking Algorithm Do?

* Goalis to reconstruct the trajectory (track) of each charged particle

e Solenoidal B field bends the trajectory in one plane (“transverse”)

* Trajectory is a helix described by 5 parameters, p, n, @, z,, d,

* We are most interested in high-momentum (high-p;), low-curvature tracks
e But trajectories may change due to interaction with materials...

e Ultimately we care mainly about:
— Initial track parameters

— Exit position to the calorimeters Actual Trajectory

Tangent tracks at
start and end.

yé >
?Beampipe B X

z z
,\ Center for Advanced Computing 17

* Kalman Filter is well suited for this job

Kalman Filter

Aircraft

* Method for obtaining best estimate of
the parameters of a trajectory \SQ

* For particle tracking: a natural way of oo L — e
easurements N alman osition R
including interactions in the material e N Filter >
(process noise) and hit position
uncertainty (measurement error) Kalman filter
From Wikipedia, the free encyclopedia
: Used bOth In pattern recognltlon (Ie' Kalman filtering, also known as linear quadratic estimation (LQE),

is an algorithm that uses a series of measurements observed over

determining which hits to group

together as coming from one particle
and In flttlng (i'e" determlnlng the input data to produce a statistically optimal estimate of the underlying
u |t| m ate t rac k pa ram ete rs) system state. The filter is named after Rudolf (Rudy) E. Kalmén, one

of the primary developers of its theory.

time, containing noise (random variations) and other inaccuracies,
and produces estimates of unknown variables that tend to be more

S

precise than those based on a single measurement alone. More
formally, the Kalman filter operates recursively on streams of noisy

R. Frihwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html

,\ Center for Advanced Computing 18

doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html

Kalman Example

e Use Kalman 12

procedure to <— Kalman procedure runs this way
101

estimate slope and T
y-intercept of a 4,:.4' '

» ||
straight-line fit to 8 T] T
noisy data T il L

e Parameter values LT
improve as data o

points are added T .||"
| ’““1!::._

* 30-line scriptin
MATLAB Final fit applies to whole dataset —

0 ! ! ! ! ! ! ! !
0 0.5 1 1.5 2 25 3 3.5 4

, Center for Advanced Computing 19

Tracking as Kalman Filter

* Track reconstruction has 3 main steps: seeding, building, and fitting
* Building and fitting repeat the basic logic unit of the Kalman Filter...

updated state

after N XNN=xN-1n+Kn* (mn-Hn-xN-1y)

— From current track state
.‘@_N (parameters and uncertainties),

track is propagated to next layer

Nth measurement ——— M
propagation to N ——— =Fn-1°XN"In-1 — Using hit measurement data,
/\ track state is updated (filtered)

— Amount of correction is inversely
weighted by hit uncertainty

— Procedure is repeated until last

layer is reached
N-1

updated state N-1
after N-1 X™ON-1

20

, Center for Advanced Computing

Track Fitting as Kalman Filter

* The track fit consists of the simple repetition

of the basic logic unit for hits that are already {F &
determined to belong to the same track

* Divided into two stages

— Forward fit: best estimate at collision point G &

— Backward smoothing: best estimate at face of

calorimeter G &
 Computationally, the Kalman Filter is a

sequence of matrix operations with small

matrices (dimension 6 or less) Q &

* But, every single track can be fit in parallel

,\ Center for Advanced Computing)1

Track Building

* Building is harder than fitting!

* After propagating a track candidate to the
next layer, hits are searched for within a
compatibility window

D> | >0
D> | D
> Q@=> @
>0>@

 Track candidate needs to branch in case of
multiple compatible hits

— The algorithm needs to be robust against
missing/outlier hits

* Due to branching, track building has typically
been the most time consuming step in event
reconstruction, by far

>Q > @ =>
=@ => @ =>
D@ D> =>

seed

N
N

, Center for Advanced Computing

Parallelization Plan for CPUs

1. Partition the tracks (or track candidates) into SIMD-size bunches
— Assign bunches to different CPU threads
— Try to vectorize operations within each bunch For b in [bunches]

2. Propagate bunches to next detector layer for t in [track bunch b]

— Rely on automatic vectorization by compiler, here
— Costliest part: computing derivatives for error propagation

3. Select one or more compatible hits in the layer (building only)
— This is hard! Depends on space-partitioning the data structures containing hits

— Combinatorial explosion! Need to cap the number of track candidates per seed

4. Perform Kalman updates on track parameters and errors
— But auto-vectorization doesn’t work well for small matrices... must focus efforts here

,\ Center for Advanced Computing 23

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

X N O Uk WD E

Conclusions and future directions

m Center for Advanced Computing ”

How Do We Get Vector Speedup?

Program the key routines in assembly...

— Ultimate performance potential, but only for the brave

Program the key routines using SIMD intrinsics...

— Step up from assembly; useful in spots, but risky

Link to an optimized library that does the heavy lifting...

— Intel MKL, e.g., written by people who know all the tricks

All these _

were tried| — BLAS is the portable interface for doing fast linear algebra

Let the compiler figure it out
— Relatively “easy” for user, “challenging” for compiler
— Compiler may need some guidance through directives

— Programmer can help by using simple loops and arrays

,\ Center for Advanced Computing 25

Objects in Track Finding and Fitting

* Hit: 3-vector of position, 3x3 symmetric covariance matrix, label
— 40 bytes, a bit less than a 64-byte cache line
* Track: 6-vector of position and momentum, 6x6 symm. cov. matrix, hit indices

— Not the most compact representation: helix has 5 parameters, 5x5 symm. cov. matrix
— But with 6x6, the covariance matrix is block diagonal, one can do sparse matrix tricks

— Keep just the indices of assigned hits — 256 bytes — 4 cache lines
e Kalman Filter: a set of operations using the above objects

— Mostly multiplications; intermediate results are 6x3 matrices
— Similarity operations that transform between measurement basis, parameter basis

— 3x3 matrix inversion
— Be careful, the product of symmetric matrices is not symmetric

26

,\ Center for Advanced Computing

Matriplex — The Key Idea

* Nearly impossible to vectorize small matrix/vector ops individually

— Many multiplications and additions, but pattern of access and operations is inconsistent

* Expand identical operations by doing V,, (8 or 16) matrices simultaneously!
— Matriplex is a library that helps you do it in optimal fashion
— Effectively, creates V,,~-way SIMD operations from V,, matrix multiplications
— Input data are repacked so that loading vector registers is trivial

* But vectorization hardly matters if the data aren’t in cache memory...

— Best if all matrices are present in L1 data cache together (L1d size: 32-64 kB)

— Can be done, but puts pressure on both cache and registers
» 6x6 floats * 4 Bytes * 3 operands * 8 = 3456 Bytes
» 6x6 floats * 4 Bytes * 3 operands * 16 = 6912 Bytes

,\ Center for Advanced Computing .

Matriplex Structure for Kalman Filter Operations

e Store in “matrix-major” order so 16 matrices work in sync (SIMD)
— Potential for 60 vector units in Intel Xeon SP to work on 960 tracks at once!

— Each individual matrix is small: 3x3 or 6x6, and may be symmetric

RI - ML) | MY(1,2) MI(LNY | M'@2,1) e I MNNY | ML) | MR(1,2) M LN | Mty | M NGNY | M
R2 - _5 M2(1L1) | M(1,2) M2(IN) | M22,1) v | MANLNY
3]
o
=
Y RIS
o
£
(]
|
&
Rn - l ML | Mr(1,2) M(ILN) | Mr@2,1) Mn(N,N) M3n(1,1)
vector . o . .
unit Matrix size NxN, vector unit size n = 16 for AVX-512 - data parallelism

, Center for Advanced Computing 28

Matriplex Templates in C++

template <typename T, idx_t D1, idx_t D2, idx_t N>

class Matriplex { // Covers also vectors with D2 = 1 and scalars with D1 = D2 = 1.
public:

typedef T value_type;

static constexpr int kRows = D1; Packed into fArray are
static constexpr int kCols = D2; .
static constexpr int kSize = D1 * D2; N matrices of type T’

dimension D1 x D2, in
“matrix-major” order,
aligned on a 64-byte
boundary in RAM

static constexpr int kTotSize = N * kSize;

T fArray[kTotSize] _ attribute_ ((aligned(64)));

template <typename T, idx_t D, idx_t N>
class MatriplexSym {

public:
typedef T value_type;
static constexpr int kRows = D;
static constexpr int kCols = D;

static constexpr int kSize (D+1) *D/ 2;
static constexpr int kTotSize = N * kSize;

T fArray[kTotSize] _ attribute_ ((aligned(64)));

Center for Advanced Computing 29

N-way SIMD with 3x3 Matrices

static void multiply(const MPlex<T, 3, 3, N>& A,
const MPlex<T, 3, 3, N>& B,
MPlex<T, 3, 3, N>& C)

Compiler should
convert each line
in the loop into a
single vector
instruction

const T *a
const T *b

T *c

#pragma omp simd

A.fArray; ASSUME_ALIGNED(a, 64);
B.fArray; ASSUME_ALIGNED(b, 64);
C.fArray; ASSUME_ALIGNED(c, 64);

for (int n = @; n < N; ++n)

{
c[@*N+n] = a[©*N+n]*b[©O*N+n] + a[1*N+n]*b[3*N+n] + a[2*N+n]*b[6*N+n];
c[1*N+n] = a[@*N+n]*b[1*N+n] + a[1*N+n]*b[4*N+n] + a[2*N+n]*b[7*N+n];
c[2*N+n] = a[©*N+n]*b[2*N+n] + a[1*N+n]*b[5*N+n] + a[2*N+n]*b[8*N+n];
c[3*N+n] = a[3*N+n]*b[©O*N+n] + a[4*N+n]*b[3*N+n] + a[5*N+n]*b[6*N+n];
c[4*N+n] = a[3*N+n]*b[1*N+n] + a[4*N+n]*b[4*N+n] + a[5*N+n]*b[7*N+n];
c[5*N+n] = a[3*N+n]*b[2*N+n] + a[4*N+n]*b[5*N+n] + a[5*N+n]*b[8*N+n];
c[6*N+n] = a[6*N+n]*b[O*N+n] + a[7*N+n]*b[3*N+n] + a[8*N+n]*b[6*N+n];
c[7*N+n] = a[6*N+n]*b[1*N+n] + a[7*N+n]*b[4*N+n] + a[8*N+n]*b[7*N+n];
c[8*N+n] = a[6*N+n]*b[2*N+n] + a[7*N+n]*b[5*N+n] + a[8*N+n]*b[8*N+n];

}

Center for Advanced Computing 30

What About SIMD Intrinsics?

* |Initial versions of the fitting code relied heavily on C++ intrinsic functions

* Improvements in compilers have largely removed the need for them

— They are still used for packing Matriplexes from input matrices

* Intrinsics for multiplying symmetric matrices are still generated using Perl
— Vectorization is otherwise tricky because only lower triangular parts are held in memory
— To account for FMA latencies, elements are not written immediately after computation

— Macros enable switching

o #if defined(__AVX512F_)
among SIMD intrinsics for

AVX. AVX2. AVX512 #define LD(a, 1) _mm512_load_ps(&a[i * N + n])
’ _’] #define ST(a, i, r) _mm512 store_ps(&a[i * N + n], r)
— The FMA instruction must #define ADD(a, b) _mm512_add_ps(a, b)
be emulated for AVX, as it #define MUL(a, b) ~mm512 mul ps(a, b)

. . #define FMA(a, b, mm512 fmadd ps(a, b, v
came in with AVX2 (v) _ _ _ps()

,\ Center for Advanced Computing 31

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

X N O Uk WD PE

Conclusions and future directions

m Center for Advanced Computing 32

Vector-Aware Coding and Performance Tuning

e Know what makes codes vectorizable at all

— The “for” loops (C) or “do” loops (Fortran) that meet constraints
 Know where vectorization ought to occur
* Arrange vector-friendly data access patterns (unit stride)
e Study compiler reports: do loops vectorize as expected?

 Implement fixes: directives, compiler flags, code changes

— Remove constructs that hinder vectorization

— Encourage/force vectorization when compiler fails to do it
— Engineer better memory access patterns

 Turn to performance tools, if further speedup is desired

,\ Center for Advanced Computing 33

Initial Speed Test of Track Fitting in a Simplified Detector

Vectorization benchmark on Xeon Phi Vectorization speedup on Xeon Phi
100

90

80

70

Time for 1M tracks [s]

60

50

40

30

20

10

Vector Width Vector Width

* Fit benchmark: average of 10 events, 10° tracks each, single thread
 Matriplex width varies from 1 (quasi-unvectorized) to 16 (full)
 Maximum speedup is only ~4.4x. What’s wrong?

, Center for Advanced Computing ”

Clues from Intel Advisor

General Exploration General Exploration viewpoint (change) @

B8 Collection Log '@ Analysis Target| | ~ Analysis Type | K Summary | [ER:Quenlie] «% Top-down Tree| BB Tasks and Frames

Grouping:] Function / Call Stack

. . ®linstructions | CPI | Start Vectorization Usage

Function/Call:Stack Clockticks Retired | Rate | Address | vectorization Intensity |L1C...| L2 ...
P helixAtRFromiterative 5,320,000,000 2,240,000,... 2.375 0x4376b0 9.826 25.393
PMatriplex::MatriplexSym<float, (int)6, (int)165::Subtract 1,330,000,000 630,000,000 2.111 0x40e24a 0.889 ().964
P __intel_Irb_memcpy 840,000,000 490,000,000 1.714 0x48ac40 6.000 7.500
PMatriplex::MatriplexSym<float, (int)3, (int)16&::Copyin 700,000,000 630,000,000 1.111 0x423b46 0.000 (.000 0.000
PupdateParametersMPlex 630,000,000/ 490,000,000/ 1.286|0x40d550 10.000 5.882
P (anonymous namespace)::MultHelixProp 630,000,000 350,000,000 1.800 0x43ded40 7.000 14.737
PMatriplex::Matriplex<float, (int)3, (int)1, (int)16>::CopyIn 560,000,000| 140,000,000/ 4.000| 0x423b4c 0.000 (.000 0.000
P (anonymous namespace)::PolarErmr 560,000,000) 0x40f720 6.500 21.667
P MkFitter::InputTracksAndHits 490,000,000/ 140,000,000/ 3.500|0x423830 0.000 0.000 0.000
P Matriplex::MatriplexSym<float, (int)6, (int)16&::Copyin 420,000,000| 490,000,000/ 0.857| 0x4238db 0.000 0.000 0.000
P MkFitter::FitTracks 420,000,000, 70,000,000 6.000|0x424c70 6.667

e Taking lots of time in routines that are unvectorized (or nearly so)
* |deal vectorization intensity should be 16
e Subtract and Copyln appear to be the top offenders

Center for Advanced Computing 35

More Clues From Optimization Reports

* Intel compilers have an option to generate vectorization reports
* One report showed a problem in a call to a Matriplex method...

remark #15344: loop was not vectorized: vector dependence
prevents vectorization. First dependence is shown below...

remark #15346: vector dependence: assumed FLOW dependence
between outErr line 183 and outErr line 183

/ AN

outErr.Subtract(propErr, outErr);

e OK!—so outErr (a reference) is both input and output. But we know that is
totally safe, because Subtract just runs element-wise through fArray

e Compiler must often make conservative assumptions by default

, Center for Advanced Computing 26

Fixing the False Loop-Carried Dependence

e Just add a pragma to ignore vector dependence

— Later this was changed to the even stronger #pragma omp simd

e Single change gave ~10% performance gain! (at full vector width)

MatriplexSym& Subtract(const MatriplexSym& a,
const MatriplexSym& b)
{
#pragma ivdep
for (idx t 1
{

©; 1 < kTotSize; ++1i)

fArray[i] = a.fArray[i] - b.fArray[i];

,\ Center for Advanced Computing 27

Copyln: Initialization of Matriplex from Track Data

* Load into register: simple vector copy L
e Store from register: messy stride-N write? N
M (1,1
M'(1,2) i
M'(1,2)
l ML | M(1,2) M(N) | M@ | . | MIINN) RI : MIN)
5
E ML) | M(1,2) MA(ILN) | M) | ., | MANN) R2 M'(1,N) M)
o M'(1,N)
g
= M'(2,1)
o
€ M'(2,1)
(] |
£ —
3
T ML) | M(1,2) M(I,N) | M 2,1) M"(N,N) Rn MINA)
Matriplex vector M'(N.N)
unit MINN)

data from input tracks

, Center for Advanced Computing 28

Slurpln: Faster, One-Pass Initialization of Matriplex

* Load into register: vector gather op (hardware)

* Store from register: simple vector copy

R1

R2

M(1,1)

M'(1,2)

M'(1,N)

<«— fast memory direction ——

ML |\ M'(1,2) M(ILN) | M@ M'(N,N)
ML | ML) MAILN) | M) e | MNN)
ML ML) M(ILN) | M@ M"(N,N)

) Center for Advanced Computing

Matriplex

vector
unit

M'(2,1)

M'(1,1)
M M'(1,2)
M'(1,2)

MI(I,N)
M M'@2.1)
M'(2,1)

M'(N,N)
M'(N,N)

M'(N,N)

data from input tracks

39

Getting Data into and out of Matriplexes

* Copyln

— Take one data array and distribute it into the Matriplex.

e Slurpln

— Build the Matriplex by taking elements (i,j) of all data arrays.

— AVX-512 includes a special gather instruction for input matrices

that are addressable from a common address base.

 CopyOut — populate output matrix

— Jumps over 8 or 16 floats (16 floats is a cache line) — yikes.

— CopyOut is done infrequently and often only for selected parts.

— It hasn’t shown up on the radar of things to fix yet.

— Copyln did and that’s why we have Slurpln ©

,\ Center for Advanced Computing 20

Retest of Track Fitting in a Simplified Detector

Vectorization benchmark on Xeon Phi Vectorization speedup on Xeon Phi
100

(o]
T

Time for 1M tracks [s]

1 1 |
16
Vector Width Vector Width

e After fixing Subtract and switching to Slurplin, test runs 25% faster
at full vector width, maximum speedup goes from ~4.4x to ~5.6x

 Amdahl’s Law: can’t get full speedup until everything is vectorized

, Center for Advanced Computing 41

A Quick Word on Amdahl’s Law

* SIMD means parallel, so Amdahl’s Law is in effect!
— Linear speedup is possible only for perfectly parallel code

— Amdahl’s asymptote of the speedup curve is 1/(serial fraction)
— Speedup of 16x is unattainable even if 99% of work is vector

16 -
- -100% .-
g ——90% -
——60% _--
Q— o -
§ A 30%
()
o
(Vs
—
2
1
1 2 4 8 16
Vector width

,\ Center for Advanced Computing 42

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

X N O Uk WD PE

Conclusions and future directions

m Center for Advanced Computing 13

Laptop Vector Utilization as a Function of Array Size

Vector utilization = sUM2
=0.45 =€ sum3
S E :

g r L1 drop off, 32KB + mul2

g 0.45_ ' . > mul3
= —— div2
- : |
- /K + 3k X\x\x L2 drop off, 256KB e

0.3 2
= J LU K
g +
0.25— J

/ AY H_ﬁx('x)\

Loop overhead

L3 drop off (6MB), too soon?

s + Output matters, too!
0.1k~ e :. X
Vector too small . e

7 /’ Division — cache does not matter B

b2
0
1 10 102 10° 10* 10° 10° 107 N
array

“mtorture” code by Matevz Tadel, UCSD

, Center for Advanced Computing "

HPC Vector Utilization as a Function of Matriplex Array Size

e . +3_8
Vector utilization e
+-3_32
,5 — i % 6_8
“— :-:_('——__ N —+— 6_16
:g f a\ " —%— 6_32
507 I
= . 4 X e Square matrix multiplications
0sl e ORI * First number is dimension
' A « Second is Matriplex width
0.5%/‘//:;)‘\
Sandy Bridge, 0 _ A
Xeon, AVX 4 ““**\
B % 4\
0.3 POy
- NOENE
B Am
0.2—
- B A
T 1 1 Illllll 1 1 IIllIII 1 1 IIlllII 1 1 IIlllII 1 1 L1 1
1 10 10° 10°

4
“ »” v Matri1p‘?ex vector size
mtorture” code by Matevz Tadel, UCSD

, Center for Advanced Computing 15

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

© N o Uk wWwheE

Conclusions and future directions

m Center for Advanced Computing 46

Intel Advisor’s Vectorization Report: gcc vs. icc

Summary 2, Survey & Roofline ™} Refinement Reports

« Vectorization and Code Insights ~

Vectorization and Code Insights perspective lets you identify loops that
will benefit most from vector parallelism, discover performance issues
preventing from effective vectorization.

v Program Metrics

Program Elapsed Time 10.01s Number of CPU Threads 1

Vector Instruction Set ™ AVX2, AVX

v Performance Characteristics

CPU Time

Time in 1 Vectorized
Loop

I 100%
‘ 0.1%

Time in scalar code I ©9.9%

ency (Not Available)

~ " » p N J 4 '
Lonsiaer repunding you!

work with Patrick Gartung, Fermilab

Center for Advanced Computing

Summary & Survey & Roofline ™ Refinement Reports

+ Vectorization and Code Insights ~

Vectorization and Code Insights perspective lets you identify loops that
will benefit most from vector parallelism, discover performance issues
preventing from effective vectorization.

v Program Metrics

Program Elapsed Time 6.34s Number of CPU Threads 1

Vector Instruction Set ™ AVX2, AVX, ...

aracteristics

CPU Time
Time in 12 Vectorized
Loops

Time in scalar code 5.86s
including time in 21
vectorized completely

Vectorized Loops ~2.39x [E .35% |
Gain/Efficiency "

Program Approximate 1.06x
Gain

47

Recent Resolution of a Long-Term Mystery!

* The Intel C/C++ Compiler Classic always produced much faster code than GCC

* The reason could be traced to sin/cos functions needed during propagation
— icc vectorized these from its SVML, enabling vectorization of a larger loop
— gcc has an equivalent vector math library, libmvec, but it did not come until glibc 2.22
— Thus, older operating systems such as CentOS 7 did not include libmvec
e The full solution did not arrive until last year...
— AlmalLinux 8 (and similar CentOS 8 replacements) shipped with libmvec
— For gccto link to it, -ffast-math (or at least a subset of it) must also be specified
— But still, gcc found the propagation loop too complicated to vectorize
— The main loop had to be broken into many subloops that were obviously vectorizable

work with Patrick Gartung, Fermilab

,\ Center for Advanced Computing 48

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

X N O Uk W=

Conclusions and future directions

m Center for Advanced Computing 19

Strategy for Track Building with “mkFit”

* Keep the same goal of vectorizing and multithreading all operations
— Vectorize by continuing to use Matriplex, just as in fitting
— Multithread by binning tracks in eta (related to angle from axis)

Add two big complications
— Hit selection: hit(s) on next layer must be selected from ~10k hits
— Branching: track candidate must be cloned for >1 selected hit
e Speed up hit selection by binning hits in both eta and phi (azimuth)
— Faster lookup: compatible hits for a given track are found in a few bins
* Limit branching by putting a cap on the number of candidate tracks

— Sort the candidate tracks at the completion of each layer
— Keep only the best candidates; discard excess above the cap

,\ Center for Advanced Computing <0

Simplifying the Geometry

 Don’t propagate to one of
the tiled, overlapping
modules in CMS; instead,
SIMD-propagate bunches of
tracks to an average r
(barrel) or z (disk/endcap)

e Search for nearby hits in a
global coordinate space

* Pay one-time, up-front cost
(per event) to transform all
hits into global coordinates

, Center for Advanced Computing

,/ 1.7
N 2.0
— 25
1 rg"?St;'iﬁTi"acf:ker‘f‘”f
0 N ';'PiXeI'Tra‘Ckerf‘f" -
0 400 800 1200 1600 2000 2400 2800 z[mm]
CMS Phase-1 Simplified Geometry *
L R < — e
“—barrel 1.
i | transition region
1 — — — 7
- endcap

250 300 51

© bin binO : binl: bin2 * bin3 * bind : bin5 : bin6: ... * .. ‘hinN-1 binN
tracks
R S
. hits
< : :
minEta . . : : : : : . . . maxEta

* Eta binning is natural for both track candidates and hits

— Tracks don’t curve in eta

* Form overlapping bins of hits, 2x wider than bins of track candidates

— Track candidates never need to search beyond one extra-wide bin

e Associate threads with distinct eta bins of track candidates
— Assign 1 thread to j bins of track candidates, or vice versa (j can be 1)
— Threads work entirely independently - task parallelism

,\ Center for Advanced Computing 52

Intel Advisor: Lots of Time in Memory Operations

Advanced Hotspots Hots

viewpoint (change)

= ® A
Grouping: | Function / Call Stack s] () @) &)
] CPU Time *®
Function / Call Stack] Effective Time by Utikzatione PR T [Baarrriall oo posor Bl bz
j’ @ !de @ Poor DOk @ !deal @ Over b s

b std vector<int, std:-allocator<int>> :vector 40.772s 114,991.736,536 728.825.808 0
b_int_free 39.751s I 136,359,038,066 0 1,125,954,207
b operator new 32 712« £6,154,002,942 0 0
b atan2f 30.187s I 96,263,571,713 0 0
bbrk 14.193: D 2.656,096,078 0 0
P Matriplex: -MatnplexSym<float, (int)3, (int)8>::Slurpin 13.732s D 27,254,784,743 0 0
b std vector<Hit, std: allocator<Hit>>: vector 13 491 D 48,368,155,014 1,447.206.650 6,041,737
b Matriplex: - CramerinverterSym<float, (int)3, (int)8>::Invert 8.327s D 15,279,940,773 0 0
bstd . unguarded hnear insert<_ gnu_cxx::__normal_iterator<Track*, std vector<Tack, std:-allocator<T 6851s =3 40.713,325.132 59.662.888 888,022,699
P ROOT::Math: - MatRepSym<float, (unsigned int)6>:.operator= 6.092s D 12,600,131,879 0 467,391,832
P _intel_ssse3_rep_memmove 5.754s D 14,338,306,198 0 0
b std: .vector<std::vector<Track, std: :allocator<Track>>, std:-allocator<std: vector<Track, std::allocator<T 4.927s B 8,850,791.643 17.446 13,912,039
b std vector<EtaBinOfCombCandidates, std allocator<EtaBinOfCombCandidates>>: ~vector as3e: D 5.514.436.399 0 34,567,836
P MkFitter: - FindCandidates as508s B 11,976,985,333 7.887,339 187,147,759
b std vector<Track, std allocator<Tack>>: reserve 4334: 1D 7.961,238,732 14,178,785 0
bfree 30185 12,843,035,454 0 0
b std vector<int, std:-allocator<int>>: M_emplace_back_aux<int const&> 301218 24,161,489523 394,041,601 0
P Matriplex: -MatnplexSym<float. (int)6, (int)8>: operator= 2818518 9.673.130,099 0 1.350.384.733
P Track: Track 2 786'.. 7.584.,629.305 93.542,787 463.911.688
b_10_file_write 259258 435,958,384 0 0
b propagateHelx ToRMPlex 220 3’.' 3.122.056,392 0 0
bstd-:__insertion_sort<__gnu_cxx::__normal_iterator<Track®, std:.vector<Track, std: :allocator<Wack>>>,1 2.164s[7.990,728,691 5.356,129 62,442,951

* Profiling showed the busiest functions were memory operations!
e Cloning of candidates and loading of hits were major bottlenecks

This was alleviated by reducing sizes of Track by 20%, Hit by 40%
— Track now references Hits by index, instead of carrying full copies

Center for Advanced Computing 53

Related Scaling Problems?

Xeon - parallelized, vector size = 8

-
%))

10x20k tracks build time [s]

N
o

rTTr T TTT T T T T T rTIrrTryroITTd
l] I I I

o

—e— Measured

—— ldeal Scaling

1 [1 1 Il 1 I 1 1 1 1 l 1 1 1

O 11717

1 I 1 1 1
5 10 15 20

25

Number of threads

Xeon Phi - parallelized, vector size = 16 (int.)

D
o
¢

| ——

1T

20

—e— Measured

—— ldeal Scaling

& Y
A -

| l 1 1 | | Lo

o_lll

11 l 11 1 L 1T : B . ——— + P P S PR - 1 l 111
20 40 60 80 100 120 140 160 180 200 220 240
Number of threads

* Test parallelization by assigning threads to 21 eta bins
— For nEtaBin/nThreads =j > 1, assign j eta bins to each thread
— For nThreads/nEtaBin = j > 1, assign j threads to each eta bin

e Observe poor scaling and saturation of speedup

,\ Center for Advanced Computing

54

Amdahl’s Law Again

e Possible explanation: some fraction B of work is a serial bottleneck
* If so, the minimum time for n threads is set by Amdahl’s Law:

T(n) =T(1) [(1-B)/n + B]

parallelizable... not!

* Note, asymptote as n - « is not zero, but T(1)B

e |dea: plot the scaling data to see if it fits the above functional form
— If it does, start looking for the source of B
— Progressively exclude any code not in an OpenMP parallel section
— Trivial-looking code may actually be a serial bottleneck...

,\ Center for Advanced Computing 55

Busted!

Xeon - parallelized, vector size = 8 Xeon - parallelized, vector size = 8
0.9 0.9

0.8 Q 0.8)

\ e=p=mt-2, NO Vtune 16, avg of 9 / l 01450
0.7 ‘ ==mt-2, eta bin excl., avg of 9 0.7

“\ =r=|deal

0.6 \\ 0.6
0.5

0.5

hyperthreading

04 effect

0.4

20k tracks avg build time [s]
20k tracks avg build time [s]

=g==mt-2, NO Vtune 16, avg of 9
03 03 == Amdahl, s = 0.26, Ts = 0.215s
' - ' // ==mt-2, eta bin excl., avg of 9
0.2 \ 0.2 =si¢&=Amdahl, s = 0.09, Ts = 0.06s
2
5

' =r=|deal
—
—
20

10 15 25 0 0.2 0.4 0.6 0.8 1 1.2
Nthreads 1/Nthreads

o

0.1

* Huge improvement from excluding one code line creating eta bins
EventOfCombCandidates event of comb_cands;
// constructor triggers a new std::vector<EtaBinOfCandidates>

e Accounts for 0.145s of serial time (0.155s)... scaling is still not ideal

,\ Center for Advanced Computing c6

Intel VTune Shows Another Issue

* VTune reveals non-uniformity of occupancy within OpenMP threads
— Some threads take far longer than others: load imbalance
— Worsens as threads increase: test below uses 42 threads on Xeon Phi

QUQ+Q-Qe __25140ms_ 25150ms_ 25160ms_ 25170ms 25180ms_25190ms_25200ms_ 25210ms_25220ms_ 25230ms _25240ms _25250ms_25260ms _2527(Ruler Area

OMP Master Thread #0 (TI...

OMP Worker Thread #1 (TI...

OMP Worker Thread #41 (...

OMP Worker Thread #28 (...

OMP Worker Thread #11 (...

OMP Worker Thread #37 (...

OMP Worker Thread #17 (...

OMP Worker Thread #24 (...

7 Region Instance
[J /= OpenMP Barrier-to-...

‘Thread HC|
3 A

OMP Worker Thread #40 (... (&3 Running
OMP Worker Thread #21 (... Context Switches
OMP Worker Thread #4 (TI... [Preemption
° OMP Worker Thread #16 (... [Synchronization
g OMP Worker Thread #5 (TI... duk CPU Time
F |OMP Worker Thread #23 (... Huk Spin and Overhead ...

[[]¥ Hardware Event Sample

CPU Time
ik CPU Time

dws Spin and Overhead ...

OMP Worker Thread #26 (...

CPU Time

¥

~

 Need dynamic reallocation of thread resources, e.g., task queues

,\ Center for Advanced Computing

57

Improvement with Intel Threading Building Blocks

 TBB allows eta bins to be processed by varying numbers of threads

* Allows idle threads to steal work from busy ones

vvvvvvvvv | LN B B T T T T T LU S S B s S s S S M S S B e e s LIS B S S S S S B B B B B B S s T T T T T T T T T T T

QUQ#Q-Qe 20930ms 20940ms 209%0ms 208 oms 20 oms - 20¢ ., 209%ms 21000ms = 2IC oms _ [@[Thread N
OMP Master Thre... | | | (7] &) Running
Thread (TID: 14326) | e e || [Context Switches
Thread (TID: 14331) | o [Preemption
Thread (TID: 14324) | | S [Synchronization
Thread (TID: 14316) | el A (9. CPU Time
o [Thread (TID: 14334) | o D (). Spin and Overhead...
$ [Thread (TID: 14329) | e i | [~ Hardware Event Sam...
i [T (TID: 14306) | e |) cPu Time
Thread (TID: 14309) | e e | (v CPU Time
Thread (TID: 14341)| ___ [| (97t Spin and Overhead..
TNIEAU (TID: 14338) | e e S
TNCQ (TID: 14332) | o
TNIEAA (TID: 14327) | e
TN (TID: 14314) | e A
CPU Time
——pf

e Much better load balance

) Center for Advanced Computing

58

Summary: Building Tracks in Parallel with mkFit

* Nested levels of parallel tasks for track building:
1. Loop over different events;
2. Loop over different n-regions;
3. Loop over z-/r- and ¢-sorted groups of seeds.

* Parallel tasks scheduled through Intel TBB

— Dynamic task stealing to balance workloads

e Basic parallel task includes simplified two-step propagation
— Propagate to average r or z of detector layer, compute compatibility window
— Propagate to each hit in window, select which hit(s) to add to track based on x?
— Kalman calculations include multiple scattering and energy loss in detector layer

,\ Center for Advanced Computing <9

Introduction to particle colliders and the tracking problem
Reconstructing particle tracks with a Kalman Filter algorithm
Vectorization of the basic Kalman Filter operations

Tuning Matriplex methods to improve vectorization
Checking the cache performance of Matriplex

Using compilers to auto-vectorize track propagation

The multithreaded framework for building tracks

© N O Uk W RE

Conclusions and future directions

m Center for Advanced Computing €0

mkFit Code Performance

° Est|mates Of pa ra”ehza“on Vectorization Scaling Thread Scaling
o [2130
based on Amdahl’s Law s I e
— ~70% vectorized § | $ |
* Upto 6.7x faster building & | / &
time where mkFit is used 2 Amcants Law (=597 10f - Amdahls Law (p=2%)
B ce—sc,sp Amdahl's Law (p=97%)
— Reduction of 25% in total . —e— SKLSP
tracking time | T o=
. 00 10) 1_5 00 50 100 150
— Event throughput increase Matriplex Width Number of Threads
Of 10-15% in LHC Run 3 “KNL” — 64 cores:
Intel Xeon Phi 7210 @ 1.30 GHz
CMS is now using mkFit by default "SKL-SP” = 2-socket x 16 cores:

. Intel Xeon Gold 6130 @ 2.10 GHz
for computing most tracks

, Center for Advanced Computing 61

Future Directions

Extend the mkFit paradigm to more applications

— Example: extend to more complex track building steps for further speed-up

e Apply to track fitting

— Time for fitting is now comparable to track building

Build tracks for the High Level Trigger

— The HLT computes on the raw data in real time and decides which events to keep

Modify for CMS Phase-2 geometry and configuration
— Optimize and tune for the new detector
— Look for synergies with other algorithms

,\ Center for Advanced Computing -

