
Center for Advanced Computing

Parallelized Track Reconstruction for the
LHC: the mkFit Project

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 21, 2023

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

2

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

3

Center for Advanced Computing

High Performance Computing in High Energy Physics

4

Collaborators
K. McDermott, G. Niendorf,
M. Reid, D. Riley, P. Wittich
 (Cornell);
S. Berkman, G. Cerati,
P. Gartung, M. Kortelainen
 (Fermilab);
B. Wang (NVIDIA);
P. Elmer (Princeton);
L. Giannini, S. Krutelyov,
M. Masciovecchio,
M. Tadel, E. Vourliotis,
F. Würthwein, A. Yagil
 (UCSD);
B. Gravelle, B. Norris
 (U. Oregon);
A. R. Hall (USNA).

Photo: CMS detector, LHC, CERN

Key reference: S. Lantz et al., J. Inst. 15 P09030 (2020)

https://doi.org/10.1088/1748-0221/15/09/P09030

Center for Advanced Computing

 LHC: The Super Collider

5

The Large Hadron Collider
repeatedly smashes beams
of protons into each other
as they go around a ring 17
miles in circumference at
nearly the speed of light

The Compact Muon Solenoid
(CMS) is one of the detectors
in the LHC (actual photo)

Center for Advanced Computing

Collision Energy Becomes Particle Masses: E=mc2

6

Center for Advanced Computing

Higgs Discovery @ LHC

7

Big news on July 4, 2012!

Center for Advanced Computing

Big Data Challenge

• 40 million collisions a second
• Most are boring

– Dropped within 3 μs

• 0.5% are interesting
– Worthy of reconstruction...

• Higgs events: super rare
– 1016 collisions → 106 Higgs
– Maybe 1% of these are found

• Ultimate “needle in a haystack”
• “Big Data” since before it was cool

8

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Center for Advanced Computing

CMS: Like a Fast Camera for Identifying Particles

9

Particles interact differently, so CMS is a detector with different layers to
identify the decay remnants of Higgs bosons and other unstable particles

Positron

Our focus

Center for Advanced Computing

CMS Is About to Get Busier

10

Simulation of pile-up = 140
at CMS in r-z plane

r

z
• By 2025 2029, the instantaneous luminosity of the LHC will increase by

a factor of 2.5, transitioning to the High Luminosity LHC (HL-LHC)
• Significant increase in number of interactions per bunch crossing, i.e.,

“pile-up”, on the order of 140–200 interactions per event

Center for Advanced Computing

Reconstruction Will Soon Run Into Trouble

11

• Higher detector occupancy puts a strain on
read-out, selection, and event reconstruction

• A slow step in reconstruction is combining
~106 energy deposits (“hits”) in the tracker to
form charged-particle trajectories – tracking

• Tracking is typically the biggest contributor to
reconstruction time per event in CMS, and for
high pile-up, it diverges

• We can no longer rely on Moore’s Law scaling of CPU frequency to keep up
with growth in reconstruction time – we need a new solution

• Can we make the tracking algorithm concurrent to gain speed?

Center for Advanced Computing

Overview of CPU Speed and Complexity Trends

12

GitHub link

discontinuity in ~2005

https://github.com/karlrupp/microprocessor-trend-data/blob/master/48yrs/48-years-processor-trend.png

Center for Advanced Computing

Two Types of Intra-Processor Parallelism

• Vectorization (data parallelism)
– “Lock step” Instruction Level Parallelization: SIMD = Single Instruction, Multiple Data
– Requires minimization of branching and efficient memory utilization
– It’s all about finding simultaneous operations, on well-aligned data

• Multithreading (task parallelism)
– OpenMP, Threading Building Blocks, Pthreads, etc., to use multiple cores
– It’s all about sharing work and balancing the load, with minimal overhead

• To occupy a processor fully, both types need to be identified and addressed
– Vectorized loops (not the whole code) gain 8x or 16x performance on CPUs
– Multithreading offers a further Mx speedup on M cores

• Prior tracking algorithms did not do this at the event level—can we? (How?)

13

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

14

Center for Advanced Computing

History of the Trackreco/mkFit Project

• 2015 NSF PIF (Physics at the Information Frontier) grant: “Particle Tracking at
High Luminosity on Heterogeneous, Parallel Processor Architectures”
– Cornell, Princeton, UCSD ➛ all CMS
– HL-LHC: high pile-up, 200 interactions per bunch crossing
– New (at the time) computer architectures: MIC / AVX-512, GPUs, ARM-64
– Goal: make tracking software more general and faster!

• Proposal: enhance the parallelism of existing, production tracking algorithms
based on Kalman Filter:
– Keep well-known physics performance – efficiencies, fake rates
– Make code amenable to vectorization and multithreading, through new data structures

and generalized algorithms

15

Center for Advanced Computing

Why Kalman Filter for Particle Tracking?

• Naively, each particle’s trajectory is
described by a single helix

• Forget it
– Non-uniform B field
– Scattering
– Energy loss
– ...

• Trajectory is only locally helical
• Kalman Filter allows us to take these

effects into account, while preserving
a locally smooth trajectory

16

science
fiction...

..vs. real
materials

Center for Advanced Computing

What Does the Tracking Algorithm Do?

• Goal is to reconstruct the trajectory (track) of each charged particle
• Solenoidal B field bends the trajectory in one plane (“transverse”)
• Trajectory is a helix described by 5 parameters, pT, η, φ, z0, d0

• We are most interested in high-momentum (high-pT), low-curvature tracks
• But trajectories may change due to interaction with materials…
• Ultimately we care mainly about:

– Initial track parameters
– Exit position to the calorimeters

• Kalman Filter is well suited for this job

17

Center for Advanced Computing

Kalman Filter

• Method for obtaining best estimate of
the parameters of a trajectory

• For particle tracking: a natural way of
including interactions in the material
(process noise) and hit position
uncertainty (measurement error)

• Used both in pattern recognition (i.e.,
determining which hits to group
together as coming from one particle)
and in fitting (i.e., determining the
ultimate track parameters)

18

R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html

doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html

Center for Advanced Computing

Kalman Example

• Use Kalman
procedure to
estimate slope and
y-intercept of a
straight-line fit to
noisy data

• Parameter values
improve as data
points are added

• 30-line script in
MATLAB

19

Kalman procedure runs this way

Final fit applies to whole dataset

Center for Advanced Computing

Tracking as Kalman Filter

• Track reconstruction has 3 main steps: seeding, building, and fitting
• Building and fitting repeat the basic logic unit of the Kalman Filter...

– From current track state
(parameters and uncertainties),
track is propagated to next layer

– Using hit measurement data,
track state is updated (filtered)

– Amount of correction is inversely
weighted by hit uncertainty

– Procedure is repeated until last
layer is reached

20

Center for Advanced Computing

Track Fitting as Kalman Filter

• The track fit consists of the simple repetition
of the basic logic unit for hits that are already
determined to belong to the same track

• Divided into two stages
– Forward fit: best estimate at collision point
– Backward smoothing: best estimate at face of

calorimeter

• Computationally, the Kalman Filter is a
sequence of matrix operations with small
matrices (dimension 6 or less)

• But, every single track can be fit in parallel

21

Center for Advanced Computing

Track Building

• Building is harder than fitting!
• After propagating a track candidate to the

next layer, hits are searched for within a
compatibility window

• Track candidate needs to branch in case of
multiple compatible hits
– The algorithm needs to be robust against

missing/outlier hits

• Due to branching, track building has typically
been the most time consuming step in event
reconstruction, by far

22

Center for Advanced Computing

Parallelization Plan for CPUs

1. Partition the tracks (or track candidates) into SIMD-size bunches
– Assign bunches to different CPU threads
– Try to vectorize operations within each bunch

2. Propagate bunches to next detector layer
– Rely on automatic vectorization by compiler, here
– Costliest part: computing derivatives for error propagation

3. Select one or more compatible hits in the layer (building only)
– This is hard! Depends on space-partitioning the data structures containing hits
– Combinatorial explosion! Need to cap the number of track candidates per seed

4. Perform Kalman updates on track parameters and errors
– But auto-vectorization doesn’t work well for small matrices… must focus efforts here

23

multithread this loop...
For b in [bunches]
 #pragma omp simd
 for t in [track bunch b]
 # ~80 lines of calculations

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

24

Center for Advanced Computing

How Do We Get Vector Speedup?

• Program the key routines in assembly…
– Ultimate performance potential, but only for the brave

• Program the key routines using SIMD intrinsics...
– Step up from assembly; useful in spots, but risky

• Link to an optimized library that does the heavy lifting…
– Intel MKL, e.g., written by people who know all the tricks
– BLAS is the portable interface for doing fast linear algebra

• Let the compiler figure it out
– Relatively “easy” for user, “challenging” for compiler
– Compiler may need some guidance through directives
– Programmer can help by using simple loops and arrays

25

All these
were tried!

Center for Advanced Computing

Objects in Track Finding and Fitting

• Hit: 3-vector of position, 3x3 symmetric covariance matrix, label
– 40 bytes, a bit less than a 64-byte cache line

• Track: 6-vector of position and momentum, 6x6 symm. cov. matrix, hit indices
– Not the most compact representation: helix has 5 parameters, 5x5 symm. cov. matrix
– But with 6x6, the covariance matrix is block diagonal, one can do sparse matrix tricks
– Keep just the indices of assigned hits – 256 bytes – 4 cache lines

• Kalman Filter: a set of operations using the above objects
– Mostly multiplications; intermediate results are 6x3 matrices
– Similarity operations that transform between measurement basis, parameter basis
– 3x3 matrix inversion
– Be careful, the product of symmetric matrices is not symmetric

26

Center for Advanced Computing

Matriplex – The Key Idea

• Nearly impossible to vectorize small matrix/vector ops individually
– Many multiplications and additions, but pattern of access and operations is inconsistent

• Expand identical operations by doing VW (8 or 16) matrices simultaneously!
– Matriplex is a library that helps you do it in optimal fashion
– Effectively, creates VW-way SIMD operations from VW matrix multiplications
– Input data are repacked so that loading vector registers is trivial

• But vectorization hardly matters if the data aren’t in cache memory…
– Best if all matrices are present in L1 data cache together (L1d size: 32-64 kB)
– Can be done, but puts pressure on both cache and registers

» 6x6 floats * 4 Bytes * 3 operands * 8 = 3456 Bytes
» 6x6 floats * 4 Bytes * 3 operands * 16 = 6912 Bytes

27

Center for Advanced Computing

Matriplex Structure for Kalman Filter Operations

• Store in “matrix-major” order so 16 matrices work in sync (SIMD)
– Potential for 60 vector units in Intel Xeon SP to work on 960 tracks at once!
– Each individual matrix is small: 3x3 or 6x6, and may be symmetric

28

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M2n+1(1,1)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2(1,N) Mn+2 (2,1) … , … Mn+2(N,N) M2n+2(1,1)

… … … … … … … … … …

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(1,1) M2n(1,2) … M2n(1,N) M2n(2,1) … M2n(N,N) M3n(1,1)

Matrix size NxN, vector unit size n = 16 for AVX-512 → data parallelism

R1

R2

…

Rn

fa
st

 m
em

or
y

di
re

ct
io

n

vector
unit

Center for Advanced Computing

Matriplex Templates in C++

template <typename T, idx_t D1, idx_t D2, idx_t N>
class Matriplex { // Covers also vectors with D2 = 1 and scalars with D1 = D2 = 1.
public:
 typedef T value_type;
 static constexpr int kRows = D1;
 static constexpr int kCols = D2;
 static constexpr int kSize = D1 * D2;
 static constexpr int kTotSize = N * kSize;

 T fArray[kTotSize] __attribute__((aligned(64)));
...
template <typename T, idx_t D, idx_t N>
class MatriplexSym {
public:
 typedef T value_type;
 static constexpr int kRows = D;
 static constexpr int kCols = D;
 static constexpr int kSize = (D + 1) * D / 2;
 static constexpr int kTotSize = N * kSize;

 T fArray[kTotSize] __attribute__((aligned(64)));

29

Packed into fArray are
N matrices of type T,

dimension D1 x D2, in
“matrix-major” order,
aligned on a 64-byte

boundary in RAM

Center for Advanced Computing

N-way SIMD with 3x3 Matrices

static void multiply(const MPlex<T, 3, 3, N>& A,
 const MPlex<T, 3, 3, N>& B,
 MPlex<T, 3, 3, N>& C)

{
 const T *a = A.fArray; ASSUME_ALIGNED(a, 64);
 const T *b = B.fArray; ASSUME_ALIGNED(b, 64);
 T *c = C.fArray; ASSUME_ALIGNED(c, 64);

#pragma omp simd
 for (int n = 0; n < N; ++n)
 {

 c[0*N+n] = a[0*N+n]*b[0*N+n] + a[1*N+n]*b[3*N+n] + a[2*N+n]*b[6*N+n];
 c[1*N+n] = a[0*N+n]*b[1*N+n] + a[1*N+n]*b[4*N+n] + a[2*N+n]*b[7*N+n];
 c[2*N+n] = a[0*N+n]*b[2*N+n] + a[1*N+n]*b[5*N+n] + a[2*N+n]*b[8*N+n];
 c[3*N+n] = a[3*N+n]*b[0*N+n] + a[4*N+n]*b[3*N+n] + a[5*N+n]*b[6*N+n];
 c[4*N+n] = a[3*N+n]*b[1*N+n] + a[4*N+n]*b[4*N+n] + a[5*N+n]*b[7*N+n];
 c[5*N+n] = a[3*N+n]*b[2*N+n] + a[4*N+n]*b[5*N+n] + a[5*N+n]*b[8*N+n];
 c[6*N+n] = a[6*N+n]*b[0*N+n] + a[7*N+n]*b[3*N+n] + a[8*N+n]*b[6*N+n];
 c[7*N+n] = a[6*N+n]*b[1*N+n] + a[7*N+n]*b[4*N+n] + a[8*N+n]*b[7*N+n];
 c[8*N+n] = a[6*N+n]*b[2*N+n] + a[7*N+n]*b[5*N+n] + a[8*N+n]*b[8*N+n];
 }

}

30

Compiler should
convert each line
in the loop into a

single vector
instruction

Center for Advanced Computing

What About SIMD Intrinsics?

• Initial versions of the fitting code relied heavily on C++ intrinsic functions
• Improvements in compilers have largely removed the need for them

– They are still used for packing Matriplexes from input matrices

• Intrinsics for multiplying symmetric matrices are still generated using Perl
– Vectorization is otherwise tricky because only lower triangular parts are held in memory
– To account for FMA latencies, elements are not written immediately after computation
– Macros enable switching

among SIMD intrinsics for
AVX, AVX2, AVX512

– The FMA instruction must
be emulated for AVX, as it
came in with AVX2

31

#if defined(__AVX512F__)

#define LD(a, i) _mm512_load_ps(&a[i * N + n])
#define ST(a, i, r) _mm512_store_ps(&a[i * N + n], r)
#define ADD(a, b) _mm512_add_ps(a, b)
#define MUL(a, b) _mm512_mul_ps(a, b)
#define FMA(a, b, v) _mm512_fmadd_ps(a, b, v)

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

32

Center for Advanced Computing

Vector-Aware Coding and Performance Tuning

• Know what makes codes vectorizable at all
– The “for” loops (C) or “do” loops (Fortran) that meet constraints

• Know where vectorization ought to occur
• Arrange vector-friendly data access patterns (unit stride)
• Study compiler reports: do loops vectorize as expected?
• Implement fixes: directives, compiler flags, code changes

– Remove constructs that hinder vectorization
– Encourage/force vectorization when compiler fails to do it
– Engineer better memory access patterns

• Turn to performance tools, if further speedup is desired

33

Center for Advanced Computing

Initial Speed Test of Track Fitting in a Simplified Detector

34

• Fit benchmark: average of 10 events, 106 tracks each, single thread
• Matriplex width varies from 1 (quasi-unvectorized) to 16 (full)
• Maximum speedup is only ~4.4x. What’s wrong?

Center for Advanced Computing

Clues from Intel Advisor

35

• Taking lots of time in routines that are unvectorized (or nearly so)
• Ideal vectorization intensity should be 16
• Subtract and CopyIn appear to be the top offenders

Center for Advanced Computing

More Clues From Optimization Reports

• Intel compilers have an option to generate vectorization reports
• One report showed a problem in a call to a Matriplex method…

• OK! – so outErr (a reference) is both input and output. But we know that is
totally safe, because Subtract just runs element-wise through fArray

• Compiler must often make conservative assumptions by default

36

remark #15344: loop was not vectorized: vector dependence
prevents vectorization. First dependence is shown below...

remark #15346: vector dependence: assumed FLOW dependence
between outErr line 183 and outErr line 183

outErr.Subtract(propErr, outErr);

Center for Advanced Computing

Fixing the False Loop-Carried Dependence

• Just add a pragma to ignore vector dependence
– Later this was changed to the even stronger #pragma omp simd

• Single change gave ~10% performance gain! (at full vector width)

37

MatriplexSym& Subtract(const MatriplexSym& a,
const MatriplexSym& b)

{
#pragma ivdep

for (idx_t i = 0; i < kTotSize; ++i)
 {
 fArray[i] = a.fArray[i] - b.fArray[i];
 }
}

Center for Advanced Computing

CopyIn: Initialization of Matriplex from Track Data

• Load into register: simple vector copy
• Store from register: messy stride-N write?

38

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

… … … … …

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

fa
st

 m
em

or
y

di
re

ct
io

n
M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

R1

R2

…

Rn

vector
unit

data from input tracks

Matriplex

Center for Advanced Computing

SlurpIn: Faster, One-Pass Initialization of Matriplex

• Load into register: vector gather op (hardware)
• Store from register: simple vector copy

39

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

… … … … …

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

fa
st

 m
em

or
y

di
re

ct
io

n
M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

R1

R2

…

Rn

vector
unit

data from input tracks

Matriplex

vg
ath

er

Center for Advanced Computing 40

• CopyIn
– Take one data array and distribute it into the Matriplex.

• SlurpIn
– Build the Matriplex by taking elements (i,j) of all data arrays.
– AVX-512 includes a special gather instruction for input matrices

that are addressable from a common address base.

• CopyOut – populate output matrix
– Jumps over 8 or 16 floats (16 floats is a cache line) – yikes.
– CopyOut is done infrequently and often only for selected parts.
– It hasn’t shown up on the radar of things to fix yet.
– CopyIn did and that’s why we have SlurpIn J

Getting Data into and out of Matriplexes

Center for Advanced Computing

Retest of Track Fitting in a Simplified Detector

41

• After fixing Subtract and switching to SlurpIn, test runs 25% faster
at full vector width, maximum speedup goes from ~4.4x to ~5.6x

• Amdahl’s Law: can’t get full speedup until everything is vectorized

Center for Advanced Computing

A Quick Word on Amdahl’s Law

42

• SIMD means parallel, so Amdahl’s Law is in effect!
– Linear speedup is possible only for perfectly parallel code
– Amdahl’s asymptote of the speedup curve is 1/(serial fraction)
– Speedup of 16x is unattainable even if 99% of work is vector

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

43

Center for Advanced Computing

Laptop Vector Utilization as a Function of Array Size

44

Loop overhead

Division – cache does not matter

?

Vector too small

L1 drop off, 32KB

L2 drop off, 256KB

L3 drop off (6MB), too soon?
Output matters, too!

“mtorture” code by Matevž Tadel, UCSD

Center for Advanced Computing

HPC Vector Utilization as a Function of Matriplex Array Size

45

Sandy Bridge,
Xeon, AVX

• Square matrix multiplications
• First number is dimension
• Second is Matriplex width

“mtorture” code by Matevž Tadel, UCSD

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

46

Center for Advanced Computing

Intel Advisor’s Vectorization Report: gcc vs. icc

47

work with Patrick Gartung, Fermilab

?

Center for Advanced Computing

Recent Resolution of a Long-Term Mystery!

• The Intel C/C++ Compiler Classic always produced much faster code than GCC
• The reason could be traced to sin/cos functions needed during propagation

– icc vectorized these from its SVML, enabling vectorization of a larger loop
– gcc has an equivalent vector math library, libmvec, but it did not come until glibc 2.22
– Thus, older operating systems such as CentOS 7 did not include libmvec

• The full solution did not arrive until last year…
– AlmaLinux 8 (and similar CentOS 8 replacements) shipped with libmvec
– For gcc to link to it, -ffast-math (or at least a subset of it) must also be specified
– But still, gcc found the propagation loop too complicated to vectorize
– The main loop had to be broken into many subloops that were obviously vectorizable

48

work with Patrick Gartung, Fermilab

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

49

Center for Advanced Computing

Strategy for Track Building with “mkFit”

• Keep the same goal of vectorizing and multithreading all operations
– Vectorize by continuing to use Matriplex, just as in fitting
– Multithread by binning tracks in eta (related to angle from axis)

• Add two big complications
– Hit selection: hit(s) on next layer must be selected from ~10k hits
– Branching: track candidate must be cloned for >1 selected hit

• Speed up hit selection by binning hits in both eta and phi (azimuth)
– Faster lookup: compatible hits for a given track are found in a few bins

• Limit branching by putting a cap on the number of candidate tracks
– Sort the candidate tracks at the completion of each layer
– Keep only the best candidates; discard excess above the cap

50

Center for Advanced Computing

Simplifying the Geometry

• Don’t propagate to one of
the tiled, overlapping
modules in CMS; instead,
SIMD-propagate bunches of
tracks to an average r
(barrel) or z (disk/endcap)

• Search for nearby hits in a
global coordinate space

• Pay one-time, up-front cost
(per event) to transform all
hits into global coordinates

51

barrel
transition region

endcap

Center for Advanced Computing

Eta Binning

• Eta binning is natural for both track candidates and hits
– Tracks don’t curve in eta

• Form overlapping bins of hits, 2x wider than bins of track candidates
– Track candidates never need to search beyond one extra-wide bin

• Associate threads with distinct eta bins of track candidates
– Assign 1 thread to j bins of track candidates, or vice versa (j can be 1)
– Threads work entirely independently → task parallelism

52

Center for Advanced Computing

Intel Advisor: Lots of Time in Memory Operations

53

• Profiling showed the busiest functions were memory operations!
• Cloning of candidates and loading of hits were major bottlenecks

– This was alleviated by reducing sizes of Track by 20%, Hit by 40%
– Track now references Hits by index, instead of carrying full copies

Center for Advanced Computing

Related Scaling Problems?

• Test parallelization by assigning threads to 21 eta bins
– For nEtaBin/nThreads = j > 1, assign j eta bins to each thread
– For nThreads/nEtaBin = j > 1, assign j threads to each eta bin

• Observe poor scaling and saturation of speedup

54

Center for Advanced Computing

Amdahl’s Law Again

• Possible explanation: some fraction B of work is a serial bottleneck
• If so, the minimum time for n threads is set by Amdahl’s Law:

T(n) = T(1) [(1−B)/n + B]
parallelizable… not!

• Note, asymptote as n → ¥ is not zero, but T(1)B
• Idea: plot the scaling data to see if it fits the above functional form

– If it does, start looking for the source of B
– Progressively exclude any code not in an OpenMP parallel section
– Trivial-looking code may actually be a serial bottleneck…

55

Center for Advanced Computing

Busted!

56

• Huge improvement from excluding one code line creating eta bins
EventOfCombCandidates event_of_comb_cands;
// constructor triggers a new std::vector<EtaBinOfCandidates>

• Accounts for 0.145s of serial time (0.155s)... scaling is still not ideal

Center for Advanced Computing

Intel VTune Shows Another Issue

• VTune reveals non-uniformity of occupancy within OpenMP threads
– Some threads take far longer than others: load imbalance
– Worsens as threads increase: test below uses 42 threads on Xeon Phi

• Need dynamic reallocation of thread resources, e.g., task queues

57

Center for Advanced Computing

Improvement with Intel Threading Building Blocks

• TBB allows eta bins to be processed by varying numbers of threads
• Allows idle threads to steal work from busy ones

• Much better load balance

58

Center for Advanced Computing

Summary: Building Tracks in Parallel with mkFit

• Nested levels of parallel tasks for track building:
1. Loop over different events;
2. Loop over different η-regions;
3. Loop over z-/r- and φ-sorted groups of seeds.

• Parallel tasks scheduled through Intel TBB
– Dynamic task stealing to balance workloads

• Basic parallel task includes simplified two-step propagation
– Propagate to average r or z of detector layer, compute compatibility window
– Propagate to each hit in window, select which hit(s) to add to track based on χ2

– Kalman calculations include multiple scattering and energy loss in detector layer

59

Center for Advanced Computing

Outline

1. Introduction to particle colliders and the tracking problem
2. Reconstructing particle tracks with a Kalman Filter algorithm
3. Vectorization of the basic Kalman Filter operations
4. Tuning Matriplex methods to improve vectorization
5. Checking the cache performance of Matriplex
6. Using compilers to auto-vectorize track propagation
7. The multithreaded framework for building tracks
8. Conclusions and future directions

60

Center for Advanced Computing

mkFit Code Performance

61

• Estimates of parallelization
based on Amdahl’s Law
– ~70% vectorized
– 95%+ multithreaded

• Up to 6.7x faster building
time where mkFit is used
– Reduction of 25% in total

tracking time
– Event throughput increase

of 10–15% in LHC Run 3 “KNL” — 64 cores:
Intel Xeon Phi 7210 @ 1.30 GHz
“SKL-SP” — 2-socket x 16 cores:
Intel Xeon Gold 6130 @ 2.10 GHz

CMS is now using mkFit by default
for computing most tracks

Center for Advanced Computing

Future Directions

• Extend the mkFit paradigm to more applications
– Example: extend to more complex track building steps for further speed-up

• Apply to track fitting
– Time for fitting is now comparable to track building

• Build tracks for the High Level Trigger
– The HLT computes on the raw data in real time and decides which events to keep

• Modify for CMS Phase-2 geometry and configuration
– Optimize and tune for the new detector
– Look for synergies with other algorithms

62

