What a flavour (and CP) symmetry can do for you

Claudia Hagedorn IFIC - UV/CSIC

Sixth Sydney meeting, UNSW Sydney, 26.-27.07.2023

Overview

- Introduction
- Flavour and CP symmetries
- Example 1: Inverse seesaw mechanism
- Example 2: Low-scale seesaw mechanism
- Example 3: Model with leptoquark
- Summary and Outlook

• Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations

generation

C. Hagedorn

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations

C. Hagedorn

C. Hagedorn

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing

NuFIT 5.1 ('21)

PDG ('20) Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)

$$Y_B = \frac{n_B - n_{\overline{B}}}{s} \Big|_0 = 8.75 \times 10^{-11}$$

Planck ('18)

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach

Current experimental limit

$$BR(\mu \to e\gamma) < 4.2 \cdot 10^{-13}$$

MEG at PSI ('16)

6th Sydney meeting

C. Hagedorn

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach
 - Flavour and CP violation needs to be kept under control

C. Hagedorn

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach
 - Flavour and CP violation needs to be kept under control
 - Possible correlations among different signals

- Let us be inspired by the success of gauge symmetries.
- Assume a **new symmetry, acting on flavour space**, e.g.

with q_i being the *i*th quark generation.

This constrains the couplings in the flavour sector, i.e. the quark masses and mixing.

Properties of this new symmetry G_f ?

C. Hagedorn

Properties of this new symmetry G_f ?

 G_f could be ...

- ... abelian or non-abelian
- ... continuous or discrete
- ... local or global
- ... spontaneously broken or explicitly
- ... broken arbitrarily or to non-trivial subgroups
- ... broken at low or high energies

Its maximal possible size depends on the chosen gauge group.

Properties of this new symmetry G_f ?

 G_f could be ...

- ... abelian or **non-abelian**
- ... continuous or **discrete**
- ... local or global
- ... spontaneously broken or explicitly
- ... broken arbitrarily or to **non-trivial subgroups**
- ... broken at low or high energies

Its maximal possible size depends on the chosen gauge group.

Properties of this new symmetry G_f ?

 G_f could be ...

- ... abelian or **non-abelian** (three generations)
- ... continuous or **discrete** (**preferred directions**)
- ... local or global
- ... spontaneously broken or explicitly
- ... broken arbitrarily or to **non-trivial subgroups** (**predictive**)
- ... broken at low or high energies

Its maximal possible size depends on the chosen gauge group.

There are many options ...

- Dihedral symmetries D_n as well as D'_n
- Symmetric and alternating groups, *S_n* and *A_n*
- Discrete subgroups of modular group
- Groups $\Sigma(n \varphi)$
- Adding CP symmetries
- Series of groups $\Delta(3 n^2)$ and $\Delta(6 n^2)$ also with CP

Altarelli, Antusch, Branco, Calibbi, Centelles Chulia, Chen, Chu, Dasgupta, de Medeiros Varzielas, Ding, Everett, Feruglio, Gavela, Gehrlein, Girardi, Gonzalez Felipe, Grimus, CH, He, Hirsch, Joaquim, King, Lavoura, Luhn, Mahanthappa, Machado, Medina, Melis, Meloni, Merlo, Meroni, Mohapatra, Neder, Nilles, Nishi, Pas, Pascoli, Petcov, Rodejohann, Schumacher, Serodio, Shimizu, Smirnov, Spinrath, Srivastava, Stuart, Tanimoto, Titov, Valle, Vicente, Vien, Vives, Xu, Yamamoto, Ziegler, ...

Reviews

Ishimori et al. ('10), King/Luhn ('13), Feruglio/Romanino ('19); Grimus/Ludl ('11)

C. Hagedorn

[•]

There are many options ...

- Dihedral symmetries D_n as well as D'_n
- Symmetric and alternating groups, S_n and A_n
- Discrete subgroups of modular group
- Groups $\Sigma(n \varphi)$
- Adding CP symmetries
- Series of groups $\Delta(3n^2)$ and $\Delta(6n^2)$ also with CP

Example 1 & 2

C. Hagedorn

. . .

There are many options ...

• Dihedral symmetries D_n as well as D'_n

Example 3

- Symmetric and alternating groups, S_n and A_n
- Discrete subgroups of modular group
- Groups $\Sigma(n \varphi)$
- Adding CP symmetries
- Series of groups $\Delta(3 n^2)$ and $\Delta(6 n^2)$ also with CP

•

Series of groups $\Delta(3 n^2)$ **and** $\Delta(6 n^2)$

- Have 3-dim irrep(s)
- Can also offer 1-dim irreps and 2-dim irreps
- Are subgroups of SU(3)

$$\Delta(3 n^2) \qquad \qquad \text{Luhn/Nasri/Ramond ('07)} \\ a^3 = e \ , \ c^n = e \ , \ d^n = e \ , \\ c d = d c \ , \ a c a^{-1} = c^{-1} d^{-1} \ , \ a d a^{-1} = c \\ \\ g = a^{\alpha} c^{\gamma} d^{\delta} \quad \text{with} \quad \alpha = 0, 1, 2 \ , \ 0 \le \gamma, \delta \le n - 1 \\ \end{array}$$

A well-known member is the permutation group A₄

C. Hagedorn

Series of groups $\Delta(3 n^2)$ and $\Delta(6 n^2)$

- Have 3-dim irrep(s)
- Can also offer 1-dim irreps and 2-dim irreps
- Are subgroups of SU(3)

 $\Delta(6 n^2)$ Add to relations of $\Delta(3 n^2)$ Escobar/Luhn ('08)

$$\begin{split} b^2 &= e \ , \ (a \, b)^2 = e \ , \ b \, c \, b^{-1} = d^{-1} \ , \ b \, d \, b^{-1} = c^{-1} \\ g &= a^\alpha b^\beta c^\gamma d^\delta \quad \text{with} \quad \alpha = 0, 1, 2 \ , \ \beta = 0, 1 \ , \ 0 \leq \gamma, \delta \leq n-1 \end{split}$$

A well-known member is the permutation group S_4

C. Hagedorn

Add CP as further symmetry

Grimus/Rebelo ('95),

Ecker/Grimus/Neufeld ('84,'87,'88)

• Motivation:

For more than one generation of certain particle species, define CP that also acts on generations of particles,

e.g.

with

$$\Phi_i(x) \rightarrow X_{ij} \Phi_j^{\dagger}(x_P)$$
 with $(x_P)_{\mu} = x^{\mu}$
 $XX^{\dagger} = XX^{\star} = 1$

 CP is involution and corresponds to automorphism of flavour symmetry
 Feruglio/CH/Ziegler ('12) Holthausen/Lindner/Schmidt ('12), Chen et al. ('14)

C. Hagedorn

Breaking of symmetries

Feruglio/CH/Ziegler ('12)

Idea: Keep some residual symmetry among charged leptons and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing

C. Hagedorn

Breaking of symmetries

Result: four different types of mixing patterns with different properties Case 1) Case 2) Case 3 a) Case 3 b.1)

C. Hagedorn

Flavour and CP symmetries Case 2)

[M. Drewes, Y. Georis, CH, J. Klaric ('22)]

v = 3t relevant mainly for Majorana phase α C. Hagedorn

Case 2)

[M. Drewes, Y. Georis, CH, J. Klaric ('22)]

n = 14

u	u = -1	u = 0	u = +1
$ heta_L$	0.146	0.184	0.146
	(0.148)		(0.148)
$\sin^2 heta_{12}$	0.341	0.341	0.341
$\sin^2 heta_{13}$	0.0222	0.0222	0.0222
	(0.0224)	(0.0224)	(0.0224)
$\sin^2 heta_{23}$	0.437	0.5	0.563
$\Delta\chi^2$	9.25	10.8	8.27
	(11.2)	(12.5)	(8.62)
$\frac{\sin \delta = -1 \text{ for } u = 0}{\sin \delta \approx -0.811 (-0.813) \text{ for } u = \pm 1}$			

several choices for *v* admitted

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Consider a scenario of (3,3) ISS,
 i.e. 3 generations of LH doublets,
 3 generations of N_i and S_j, all of them gauge singlets

$$-(y_D)_{\alpha i}\,\overline{L}^c_{\alpha}\,H\,N^c_i-(M_{NS})_{ij}\,\overline{N}_i\,S_j-\frac{1}{2}\,(\mu_S)_{kl}\,\overline{S}^c_k\,S_l+\mathrm{h.c.}$$

Mass matrix of neutral states

$$\mathcal{M}_{\text{Maj}} = \begin{pmatrix} \mathbb{0} & m_D & \mathbb{0} \\ m_D^T & \mathbb{0} & M_{NS} \\ \mathbb{0} & M_{NS}^T & \mu_S \end{pmatrix} \text{ with } m_D = y_D \frac{v}{\sqrt{2}}$$

• Light neutrino masses $|\mu_S| \ll |m_D| \ll |M_{NS}|$

$$m_{\nu} = m_D \left(M_{NS}^{-1} \right)^T \mu_S \, M_{NS}^{-1} \, m_D^T$$

Mohapatra/Valle ('86), Mohapatra ('86), Bernabeu et al. ('87), Gonzalez-Garcia/Valle ('89) 6th Sydney meeting

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$, $S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

[detail: use additional Z_3 to distinguish e, μ, τ]

$$L_{\alpha} \sim 3 N_i \sim 3$$
, $S_j \sim 3$

irreducible, faithful, complex

Reason: Fully explore the predictive power of flavour and CP symmetry CH/Meroni/Molinaro ('14)

C. Hagedorn

C. Hagedorn

6th Sydney meeting

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

 $L_{\alpha} \sim 3$, $N_i \sim 3$, $S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

Charged lepton mass matrix

residual symmetry G_e

$$\left(egin{array}{ccc} m_e & 0 & 0 \ 0 & m_\mu & 0 \ 0 & 0 & m_ au \end{array}
ight)$$

• We take

$$\alpha_R \sim 1$$

[detail: use additional Z_3 to distinguish e, μ, τ]

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$, $S_j \sim 3$

irreducible, faithful, complex

[CH, J. Kriewald, J. Orloff,

A.M. Teixeira ('21)]

Reason: Get m_D and M_{NS} invariant, encode flavour and CP symmetry breaking in μ_S

C. Hagedorn

C. Hagedorn

6th Sydney meeting

Example 1: Inverse seesaw mechanism

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$
 $L_\alpha \sim 3, N_i \sim 3, S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

> Neutrino mass matrix residual symmetry G_{ν} $\mathcal{M}_{\text{Maj}} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_{NS} \\ 0 & M_{NS}^T & \mu_S \end{pmatrix} \text{ with } m_D = y_D \frac{v}{\sqrt{2}}$

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$
 $L_{\alpha} \sim 3, N_i \sim 3, S_j \sim 3$
[detail: use additional Z_3
to distinguish e, μ, τ]
Neutrino mass matrix residual symmetry G_{μ}

$$-(y_D)_{lpha i}\,\overline{L}^c_{lpha}\,H\,N^c_i-(M_{NS})_{ij}\,\overline{N}_i\,S_j-rac{1}{2}\,(\mu_S)_{kl}\,\overline{S}^c_k\,S_l+{
m h.c.}$$

No symmetry breaking

$$m_D = y_0 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \, \frac{v}{\sqrt{2}} \ \text{with} \ y_0 > 0$$

C. Hagedorn

$$M_{NS} = M_0 \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight) \ ext{ with } M_0 > 0$$

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1 \qquad \qquad L_\alpha \sim 3 , N_i \sim 3 , S_j \sim 3$$

[detail: use additional Z_3 to distinguish e, μ, τ]

Neutrino mass matrixresidual symmetry G_{ν} $-(y_D)_{\alpha i} \overline{L}^c_{\alpha} H N^c_i - (M_{NS})_{ij} \overline{N}_i S_j - \frac{1}{2} (\mu_S)_{kl} \overline{S}^c_k S_l + h.c.$

Symmetry breaking

$$U_S^T \, \mu_S \, U_S = \left(\begin{array}{ccc} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{array} \right)$$

 $U_S = \Omega(\mathbf{3}) R_{fh}(\theta_S)$

6th Sydney meeting

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$, $S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

Light neutrino mass matrix

$$m_{\nu} = \frac{y_0^2 v^2}{2 M_0^2} \mu_S = \frac{y_0^2 v^2}{2 M_0^2} U_S^{\star} \left(\begin{array}{ccc} \mu_1 & 0 & 0\\ 0 & \mu_2 & 0\\ 0 & 0 & \mu_3 \end{array}\right) U_S^{\dagger}$$

Neutrino masses

$$m_i = rac{y_0^2 \, v^2}{2 \, M_0^2} \, \mu_i \; \; {
m for} \; \; i=1,2,3$$

Lepton mixing

$$\widetilde{U}_{\mathrm{PMNS}} = \Omega(\mathbf{3}) R_{fh}(\theta_S)$$

at leading order

C. Hagedorn

C. Hagedorn

6th Sydney meeting

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1 \qquad \qquad L_\alpha \sim 3 , N_i \sim 3 , S_j \sim 3$$

[detail: use additional Z_3 to distinguish e, μ, τ]

Heavy states

$$M_{h,i} = M_0 - rac{\mu_i}{2} ~~ ext{and}~~ M_{h,i+3} = M_0 + rac{\mu_i}{2} ~~ ext{with}~~i=1,2,3$$
 .

$$\tau$$
]

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$, $S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

Back to light neutrinos

... go beyond leading order Hettmansperger/Lindner/Rode-

johann ('11)

- potentially new contributions to m_{ν}
- effects of non-unitarity

$$\widetilde{U}_{\mathrm{PMNS}} = \left(\mathbbm{1} - \eta\right) U_0$$
 $\eta = rac{y_0^2 v^2}{4 M_0^2} \,\mathbbm{1} \equiv \eta_0 \,\mathbbm{1}$

flavour-diagonal and flavour-universal

6th Sydney meeting

C. Hagedorn
Example 1: Inverse seesaw mechanism

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Constraints from non-unitarity

Strongest bound comes from $\eta_{\mu\mu}$

$$|\eta_{\alpha\beta}| \le \begin{pmatrix} 1.3 \cdot 10^{-3} & 1.2 \cdot 10^{-5} & 1.4 \cdot 10^{-3} \\ 1.2 \cdot 10^{-5} & 2.2 \cdot 10^{-4} & 6.0 \cdot 10^{-4} \\ 1.4 \cdot 10^{-3} & 6.0 \cdot 10^{-4} & 2.8 \cdot 10^{-3} \end{pmatrix}$$

Fernandez-Martinez et al. ('16)

6th Sydney meeting

C. Hagedorn

Example 1: Inverse seesaw mechanism

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Effect on lepton mixing

Case 1)

C. Hagedorn

Example 1: Inverse seesaw mechanism

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Charged lepton flavour violation

Relevant points

• Lepton number and flavour breaking are **both** encoded in the matrix

$$U_S^T \mu_S U_S = \left(egin{array}{ccc} \mu_1 & 0 & 0 \ 0 & \mu_2 & 0 \ 0 & 0 & \mu_3 \end{array}
ight) \qquad U_S = \Omega(\mathbf{3}) \, R_{fh}(heta_S)$$

• Non-unitarity effects are **flavour-diagonal and flavour-universal**

$$\eta = \frac{y_0^2 \, v^2}{4 \, M_0^2} \, \mathbb{1} \equiv \eta_0 \, \mathbb{1}$$

 Mass spectrum of heavy states is peculiar: they form pseudo-Dirac pairs with very small mass splitting and all three such pairs have a common mass scale

$$M_{h,i} = M_0 - rac{\mu_i}{2} \; \; ext{and} \; \; M_{h,i+3} = M_0 + rac{\mu_i}{2} \; \; ext{with} \; \; i=1,2,3 \, .$$

C. Hagedorn

C. Hagedorn

Consider a scenario of type I seesaw with 3 RH neutrinos,
 i.e. 3 generations of LH doublets and
 3 generations of gauge singlets ν_{Ri}

$$\mathcal{L} \supset \mathrm{i}\,\overline{\nu_R}\,\partial\!\!\!/\,\nu_R - \frac{1}{2}\overline{\nu_R^c}\,M_R\,\nu_R - \overline{l_L}\,Y_D\,\varepsilon H^*\,\nu_R + \mathrm{h.c.}$$

• Light neutrino masses

$$m_{\nu} = -m_D M_R^{-1} m_D^T$$
 with $m_D = Y_D \langle H \rangle$

Minkowski ('77), Glashow ('80), Gell-Mann/Ramond/Slansky ('79), Mohapatra/Senjanovic ('80), Yanagida ('80), Schechter/Valle ('80)

C. Hagedorn

• We take

$$\alpha_R \sim 1$$

$$l_{L\alpha}\sim 3\;, \nu_{Ri}\sim 3'$$

[detail: use additional Z_3 to distinguish e, μ, τ]

> see also Dev/CH/Molinaro ('18); Chauhan/Dev ('22) 6th Sydney meeting

C. Hagedorn

• We take

$$\alpha_R \sim 1$$

[detail: use additional Z_3 to distinguish e, μ, τ]

$$l_{L\alpha} \sim 3 \nu_{Ri} \sim 3'$$

irreducible, faithful, complex

Reason: Fully explore the predictive power of flavour and CP symmetry CH/Meroni/Molinaro ('14)

C. Hagedorn

• We take

(

$$\alpha_R \sim 1$$
 $l_{L\alpha} \sim 3, \nu_{Ri} \sim 3'$

[detail: use additional Z_3 to distinguish e, μ, τ]

Charged lepton mass matrix

residual symmetry G_e

$$\left(egin{array}{ccc} m_e & 0 & 0 \ 0 & m_\mu & 0 \ 0 & 0 & m_ au \end{array}
ight)$$

C. Hagedorn

• We take

$$\alpha_R \sim 1$$

[detail: use additional Z_3 to distinguish e, μ, τ]

$$l_{L\alpha} \sim 3 , \nu_{Ri} \sim 3'$$

irreducible, in general unfaithful, <mark>real</mark>

Reason: (flavour-universal) mass term for ν_{Ri} w/o breaking flavour and CP symmetry, breaking encoded in Y_D

6th Sydney meeting

C. Hagedorn

[M. Drewes, Y. Georis, CH, Example 2: Low-scale seesaw mechanism J. Klaric ('22)]

• We take

$$\alpha_R \sim 1 \qquad \qquad l_{L\alpha} \sim 3 , \nu_{Ri} \sim 3'$$
[detail: use additional Z₃
to distinguish e, μ, τ]

Neutral lepton sector residual symmetry
$$G_{\nu}$$

 $\mathcal{L} \supset i \overline{\nu_R} \not \partial \nu_R - \frac{1}{2} \overline{\nu_R^c} M_R \nu_R - \overline{l_L} Y_D \varepsilon H^* \nu_R + h.c.$

No symmetry breaking

 $M_R = M_R^0 = M \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} | RH \text{ neutrino masses} are degenerate}$

C. Hagedorn

• We take

$$\alpha_R \sim 1$$
 $l_{L\alpha} \sim 3, \nu_{Ri} \sim 3'$

[detail: use additional Z_3 to distinguish e, μ, τ]

Neutral lepton sectorresidual symmetry G_{ν} $\mathcal{L} \supset i \overline{\nu_R} \not \partial \nu_R - \frac{1}{2} \overline{\nu_R^c} M_R \nu_R - \overline{l_L} Y_D \varepsilon H^* \nu_R + h.c.$ Symmetry breaking

 $Y_D = \Omega(\mathbf{3}) R_{ij}(\theta_L) \operatorname{diag}(y_1, y_2, y_3) P_{kl}^{ij} R_{kl}(-\theta_R) \Omega(\mathbf{3}')^{\dagger}$

CH/Molinaro ('16)

6th Sydney meeting

C. Hagedorn

In total five free real parameters corresponding to three light neutrino masses, one free parameter for lepton mixing and one free parameter related to RH neutrinos

Possible small symmetry breaking for RH neutrino masses

$$\delta M_R = \kappa M \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array} \right)$$

$$M_1 = M (1 + 2\kappa)$$
 and $M_2 = M_3 = M (1 - \kappa)$

Often needed for generating correct amount of BAU.

C. Hagedorn

Case 1)

[M. Drewes, Y. Georis, CH, **Example 2: Low-scale seesaw mechanism** J. Klaric ('22)]

Case 1)

 $\gamma_{_B}$

 $\gamma_{_B}$

C. Hagedorn

a tuning, but related to enhanced residual symmetry, i.e. check $Y_D^{\dagger}Y_D$

C. Hagedorn

Case 1)

Majorana phase α fulfils $|\sin \alpha| = |\sin(\frac{6\pi s}{n})|$

[Remember
$$\sin\left(\frac{6\pi s}{n}\right) = 2\cos\left(\frac{3\pi s}{n}\right)\sin\left(\frac{3\pi s}{n}\right)$$
]

Majorana phase β and CP phase δ are both trivial, $\sin \beta = 0$ and $\sin \delta = 0$. C. Hagedorn 6th Sydney meeting

Flavour and CP symmetries

Dihedral symmetries *D_n*

- Have 1-dim and 2-dim irrep(s)
- Are subgroups of SO(3)
- Generators and relations

$$a^n = e \;,\;\; b^2 = e \;,\;\; a \, b \, a = b$$

Well-known members are the dihedral group D_4 and the permutation group $S_3 \simeq D_3$

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

• There are some experimental anomalies in certain flavour observables — here looked at $R(D), R(D^*)$ and anomalous magnetic moment of muon $R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}$

• Consider an extension of the SM with a leptoquark (LQ)

C. Hagedorn

• Consider an extension of the SM with a leptoquark (LQ)

$$\phi \sim (3, 1, -\frac{1}{3})$$

• It couples simultaneously to leptons and quarks, e.g.

For review on LQs see Dorsner et al. ('16)

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

• Take as ``aim" for textures of LQ couplings the following

$$\mathbf{x} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_{22} & x_{23} \\ 0 & x_{32} & x_{33} \end{pmatrix} \text{ and } \mathbf{y} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_{23} \\ 0 & y_{32} & 0 \end{pmatrix}$$

in particular use

$$\mathbf{x} \sim \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \lambda^3 & \lambda \\ 0 & \lambda^2 & 1 \end{array}\right) \text{ and } \mathbf{y} \sim \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & \lambda^3 \\ 0 & 1 & 0 \end{array}\right)$$

$$\lambda \approx 0.2$$

following the analysis in Cai et al. ('17)

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

• Note the assumed form of the charged fermion mass matrices is

• No discussion of neutrino masses

C. Hagedorn

[I. Bigaran, T. Felkl, CH,

Example 3: Model with leptoquark

M.A. Schmidt ('22)]

Field	SU(3)	SU(2)	U(1)	D_{17}	Z_{17}	
$egin{array}{c} Q = \left(egin{array}{c} Q_1 \ Q_2 \end{array} ight) \end{array}$	3	2	$\frac{1}{6}$	$\mathbf{2_2}$	1	
Q_3	3	2	$\frac{1}{6}$	1_1	16	
u_{R1}	3	1	$\frac{2}{3}$	1_2	13	
u_{R2}	3	1	$\frac{2}{3}$	1_1	8	
u_{R3}	3	1	$\frac{2}{3}$	1_1	1	
$\left \begin{array}{c} d_{R} = \left(\begin{array}{c} d_{R1} \\ d_{R2} \end{array}\right)\right $	3	1	$-\frac{1}{3}$	2_4	1	
d_{R3}	3	1	$-\frac{1}{3}$	1_1	7	
$ L = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} $	1	2	$-\frac{1}{2}$	2_1	2	
L_3	1	2	$-\frac{1}{2}$	1_1	1	
$\left \begin{array}{c} e_R = \left(\begin{array}{c} e_{R1} \\ e_{R2} \end{array} \right) \right $	1	1	-1	$\mathbf{2_3}$	2	- 1
e_{R3}	1	1	-1	1_1	9	6th

C. Hagedorn

Example 3. Model with leptoquark [I. Bigaran, T. Felkl, CH,										
M.A. Schmidt (22)]										
	Field	SU(3)	SU(2)	U(1)	D_{17}	Z_{17}	Product of			
	$Q = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}$	3	2	$\frac{1}{6}$	22	1	dihedral group			
	Q_3	3	2	$\frac{1}{6}$	11	16	and cyclic one			
	u_{R1}	3	1	$\frac{2}{3}$	1_2	13	Keasons:			
	u_{R2}	3	1	$\frac{2}{3}$	11	8	irreps: number			
	u_{R3}	3	1	$\frac{2}{3}$	11	1	of inequivalent			
	$\left \begin{array}{c} d_{R} = \left(\begin{array}{c} d_{R1} \\ d_{R2} \end{array}\right)\right $	3	1	$-\frac{1}{3}$	2_4	1	2-dim irreps; residual			
	d_{R3}	3	1	$-\frac{1}{3}$	1_1	7	subgroup to			
	$ L = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} $	1	2	$-\frac{1}{2}$	2_1	2	protect form of LO couplings			
	L_3	1	2	$-\frac{1}{2}$	1_1	1	\sim 1 0			
	$\left \begin{array}{c}e_{R}=\left(\begin{array}{c}e_{R1}\\\\e_{R2}\end{array}\right)\right.$	1	1	-1	23	2				
C. Hagedorn	e_{R3}	1	1	-1	1_{1}	9	6th Sydney meeting			

Example 3: Mo	[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]						
-	Field	SU(3)	SU(2)	U(1)	D_{17}	Z_{17}	2+1 structure
	$egin{array}{c} Q = \left(egin{array}{c} Q_1 \ Q_2 \end{array} ight) \end{array}$	3	2	$\frac{1}{6}$	22	1	for most charged
	Q_3	3	2	$\frac{1}{6}$	1_1	16	fermions
	u_{R1}	3	1	$\frac{2}{3}$	1_2	13	
	u_{R2}	3	1	$\frac{2}{3}$	11	8	Reasons:
	u_{R3}	3	1	$\frac{2}{3}$	1_1	1	3rd generation
	$d_R = \left(egin{array}{c} d_{R1} \ d_{R2} \end{array} ight)$	3	1	$-\frac{1}{3}$	24	1	much more massive;
	d_{R3}	3	1	$-\frac{1}{3}$	1_1	7	Cabibbo angle
	$L = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$	1	2	$-\frac{1}{2}$	2_1	2	
	L_3	1	2	$-\frac{1}{2}$	1_1	1	
о II – 1	$\left \begin{array}{c} e_R = \left(\begin{array}{c} e_{R1} \\ e_{R2} \end{array} \right) \right.$	1	1	-1	23	2	
C. Hagedorn	e_{R3}	1	1	-1	1_1	9	6th Sydney meeting

[I. Bigaran, T. Felkl, CH,										
Example 3: Model with leptoquark M.A. Schmidt ('22)]										
	Field	SU(3)	SU(2)	U(1)	D_{17}	Z_{17}	1+1+1 structure			
	$Q = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}$	3	2	$\frac{1}{6}$	$\mathbf{2_2}$	1	for RH			
	Q_3	3	2	$\frac{1}{6}$	1_1	16	up-type quarks			
	u_{R1}	3	1	$\frac{2}{3}$	1_2	13				
	u_{R2}	3	1	$\frac{2}{3}$	$\mathbf{1_1}$	8	Reasons:			
	u_{R3}	3	1	$\frac{2}{3}$	1_1	1	stronger mass			
	$\left \begin{array}{c} d_R = \left(\begin{array}{c} d_{R1} \\ d_{R2} \end{array}\right)\right $	3	1	$-\frac{1}{3}$	2_4	1	among up-type			
	d_{R3}	3	1	$-\frac{1}{3}$	1_1	7	quarks; achieve appro-			
	$ L = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} $	1	2	$-\frac{1}{2}$	$\mathbf{2_1}$	2	priate form of			
	L_3	1	2	$-\frac{1}{2}$	1_{1}	1	LQ coupling y			
	$\left \begin{array}{c} e_R = \left(\begin{array}{c} e_{R1} \\ e_{R2} \end{array}\right)\right.$	1	1	-1	2_3	2				
C. Hagedorn	e_{R3}	1	1	-1	1_1	9	6th Sydney meeting			

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Reason: minimality

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Reason: simplicity

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Reason:

generate masses of all 3rd generation fermions at tree level

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Introduce spurions to break G_f

Reason: easier than with multiple Higgs doublets; simplification not to consider their potential, corrections to it, etc.

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Introduce spurions to break G_f

Role of *S*:

- spurion for LQ couplings
- preserves residual symmetry

C. Hagedorn

$$\langle S
angle = egin{pmatrix} \lambda \ 0 \end{pmatrix} egin{pmatrix} \lambda pprox 0.2 \end{bmatrix}$$

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Role of *S*:

- spurion for LQ couplings
- preserves residual symmetry

$$\langle S
angle = egin{pmatrix} \lambda \ 0 \end{pmatrix} \quad \lambda pprox 0.2$$

			(0	0	0
$\mathbf{x} \sim$	$0 \lambda^3 \lambda$	and $\mathbf{y}\sim$	0	0	λ^3
	$\begin{pmatrix} 0 & \lambda^2 & 1 \end{pmatrix}$		0	1	0 /

Field	Z_{17}^{diag}	Field	$Z_{17}^{ m diag}$	Field	$Z_{17}^{ m diag}$	Field	$Z_{17}^{ m diag}$	Field	$Z_{17}^{ m diag}$
Q_1	3	d_{R1}	5	e_{R1}	5	S_1	0	W_1	14
Q_2	16	d_{R2}	14	e_{R2}	16	S_2	15	W_2	10
Q_3	16	d_{R3}	7	e_{R3}	9	T_1	10		
u_{R1}	13	L_1	3	H_u	15	T_2	6		
u_{R2}	8	L_2	1	H_d	9	U_1	10		
u_{R3}	1	L_3	1	ϕ	0	U_2	6		

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Introduce spurions to break G_f

Role of *T*:

 spurion for mass of second generation of down-type quarks and charged leptons

C. Hagedorn

 $\langle T
angle = egin{pmatrix} \lambda^2 \ 0 \end{bmatrix} \quad \lambda pprox 0.2$

Role of *T*:

 spurion for mass of second generation of down-type quarks and charged leptons

$$\langle T
angle = egin{pmatrix} \lambda^2 \ 0 \end{pmatrix} \ \lambda pprox 0.2$$

[I. Bigaran, T. Felkl, CH,

M.A. Schmidt ('22)]

$$\mathscr{L}_{\mathrm{Yuk,LO}}^{d} = \alpha_{1}^{d} \overline{Q_{3}} H_{d} d_{R3} + \alpha_{2}^{d} \overline{Q} H_{d} d_{R} T + \alpha_{3}^{d} \overline{Q} H_{d} d_{R} U$$

$$\mathscr{L}_{\text{Yuk,LO}}^e = \alpha_1^e \,\overline{L_3} \,H_d \,e_{R3} + \alpha_2^e \,\overline{L} \,H_d \,e_R \,T + \alpha_3^e \,\overline{L} \,H_d \,e_R \,U$$

Note VEV of *T* breaks residual symmetry

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Introduce spurions to break G_f

Role of *U*:

 spurion for mass of first generation of down-type quarks and charged leptons

C. Hagedorn

 $\langle U
angle = \left(egin{array}{c} 0 \ \lambda^4 \end{array}
ight) \ igsquare \lambda pprox 0.2$
Role of *U*:

 spurion for mass of first generation of down-type quarks and charged leptons

[I. Bigaran, T. Felkl, CH,
M.A. Schmidt ('22)]
$$\langle U \rangle = \begin{pmatrix} 0 \\ 14 \end{pmatrix} \qquad \lambda \approx 0.2$$

$$\mathscr{L}_{\mathrm{Yuk,LO}}^{d} = \alpha_{1}^{d} \,\overline{Q_{3}} \,H_{d} \,d_{R3} + \alpha_{2}^{d} \,\overline{Q} \,H_{d} \,d_{R} \,T + \alpha_{3}^{d} \,\overline{Q} \,H_{d} \,d_{R} \,U$$

$$\mathscr{L}_{\text{Yuk,LO}}^e = \alpha_1^e \,\overline{L_3} \,H_d \,e_{R3} + \alpha_2^e \,\overline{L} \,H_d \,e_R \,T + \alpha_3^e \,\overline{L} \,H_d \,e_R \,U$$

Note VEV of *U* breaks residual symmetry

C. Hagedorn

Role of *U*:

 spurion for mass of first generation of down-type quarks and charged leptons

$$M.A. Schmidt ('22)]$$

[I Bigaran T Felk] CH

$$\langle U
angle = egin{pmatrix} 0 \ \lambda^4 \end{pmatrix} \quad \lambda pprox 0.2$$

$$\mathscr{L}_{\text{Yuk,LO}}^{d} = \alpha_{1}^{d} \,\overline{Q_{3}} \,H_{d} \,d_{R3} + \alpha_{2}^{d} \,\overline{Q} \,H_{d} \,d_{R} \,T + \alpha_{3}^{d} \,\overline{Q} \,H_{d} \,d_{R} \,U$$

$$\mathscr{L}_{\mathrm{Yuk,LO}}^{e} = \alpha_{1}^{e} \,\overline{L_{3}} \,H_{d} \,e_{R3} + \alpha_{2}^{e} \,\overline{L} \,H_{d} \,e_{R} \,T + \alpha_{3}^{e} \,\overline{L} \,H_{d} \,e_{R} \,U$$

Note VEV of *U* breaks residual symmetry

Why not just VEV for second component of *T*?

Reasons:

- problem with order one factor between m_d and m_e
- with *T* and *U* and their VEV structure higher-order operators are better under control

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Introduce spurions to break G_f

Role of *W*:

- spurion for mass of charm quark
- generation of Cabibbo angle

C. Hagedorn

$$\langle W
angle = egin{pmatrix} \lambda^5 \ \lambda^4 \end{pmatrix} \ egin{pmatrix} \lambda pprox 0.2 \end{bmatrix}$$

Role of *W*:

- spurion for mass of charm quark
- generation of Cabibbo angle

$$\langle W
angle = egin{pmatrix} \lambda^5 \ \lambda^4 \end{pmatrix} \quad \lambda pprox 0.2$$

 $\mathscr{L}^{u}_{\mathrm{Yuk,LO}} = \alpha_1^u \,\overline{Q_3} \,H_u \,u_{R3} + \alpha_2^u \,\overline{Q} \,H_u \,u_{R2} \,W + \alpha_3^u \,\overline{Q} \,H_u \,u_{R3} \,(S^{\dagger})^2 + \alpha_4^u \,\overline{Q} \,H_u \,u_{R1} \,T^2 \,U.$

Note VEV of *W* breaks residual symmetry

C. Hagedorn

Role of *W*:

- spurion for mass of charm quark
- generation of Cabibbo angle

$$\langle W
angle = egin{pmatrix} \lambda^5 \ \lambda^4 \end{pmatrix} \quad \lambda pprox 0.2$$

 $\mathscr{L}^{u}_{\mathrm{Yuk,LO}} = \alpha_1^u \,\overline{Q_3} \,H_u \,u_{R3} + \alpha_2^u \,\overline{Q} \,H_u \,u_{R2} \,W + \alpha_3^u \,\overline{Q} \,H_u \,u_{R3} \,(S^{\dagger})^2 + \alpha_4^u \,\overline{Q} \,H_u \,u_{R1} \,T^2 \,U.$

Note VEV of *W* breaks residual symmetry

What is missing?

- mass for up quark
- smaller quark mixing angles

C. Hagedorn

Role of *W*:

- spurion for mass of charm quark
- generation of Cabibbo angle

M.A. Schmidt ('22)]
$$\langle W \rangle = \begin{pmatrix} \lambda^5 \\ \lambda^4 \end{pmatrix} \qquad \lambda \approx 0.2$$

[I. Bigaran, T. Felkl, CH,

$$\mathscr{L}^{u}_{\mathrm{Yuk,LO}} = \alpha_{1}^{u} \overline{Q_{3}} H_{u} u_{R3} + \alpha_{2}^{u} \overline{Q} H_{u} u_{R2} W + \alpha_{3}^{u} \overline{Q} H_{u} u_{R3} (S^{\dagger})^{2} + \alpha_{4}^{u} \overline{Q} H_{u} u_{R1} T^{2} U.$$

Note VEV of *W* breaks residual symmetry

What is missing?

- mass for up quark
- smaller quark mixing angles

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Result for charged fermion mass matrices

$$M_{u} = \begin{pmatrix} f_{11} \lambda^{8} & f_{12} \lambda^{5} & f_{13} \lambda^{8} \\ f_{21} \lambda^{10} & f_{22} \lambda^{4} & f_{23} \lambda^{2} \\ f_{31} \lambda^{12} & f_{32} \lambda^{4} & f_{33} \end{pmatrix} \langle H_{u}^{0} \rangle$$
$$M_{d} = \begin{pmatrix} d_{11} \lambda^{4} & d_{12} \lambda^{8} & d_{13} \lambda^{8} \\ d_{21} \lambda^{10} & d_{22} \lambda^{2} & d_{23} \lambda^{2} \\ d_{31} \lambda^{12} & d_{32} \lambda^{4} & d_{33} \end{pmatrix} \langle H_{d}^{0} \rangle$$
$$M_{e} = \begin{pmatrix} e_{11} \lambda^{4} & e_{12} \lambda^{12} & \phi(\lambda^{12}) \\ e_{21} \lambda^{8} & e_{22} \lambda^{2} & e_{23} \lambda \\ e_{31} \lambda^{9} & e_{32} \lambda^{3} & e_{33} \end{pmatrix} \langle H_{d}^{0} \rangle$$

- Charged fermion masses are reproduced well
- Quark mixing is reproduced well

C. Hagedorn

apart from ... 6th Sydney meeting

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Result for charged fermion mass matrices

... this element should be enhanced

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to LQ couplings **x**, **y** and **z**

Dominant entries of LQ couplings achieved

$$\mathbf{x} = L_{e}^{T} \, \mathbf{\hat{x}} \, L_{d} = \begin{pmatrix} a_{11} \, \lambda^{9} & a_{12} \, \lambda^{11} & a_{13} \, \lambda^{9} \\ a_{21} \, \lambda^{8} & a_{22} \, \lambda^{3} & a_{23} \, \lambda \\ a_{31} \, \lambda^{8} & a_{32} \, \lambda^{2} & a_{33} \end{pmatrix}$$
$$\mathbf{y} = R_{e}^{T} \, \mathbf{\hat{y}} \, R_{u} = \begin{pmatrix} b_{11} \, \lambda^{9} & b_{12} \, \lambda^{9} & b_{13} \, \lambda^{9} \\ b_{21} \, \lambda^{8} & b_{22} \, \lambda^{3} & b_{23} \, \lambda^{3} \\ b_{31} \, \lambda^{5} & b_{32} & b_{33} \, \lambda^{4} \end{pmatrix}$$
$$\mathbf{z} = L_{e}^{T} \, \mathbf{\hat{x}} \, L_{u} = \begin{pmatrix} c_{11} \, \lambda^{9} & c_{12} \, \lambda^{10} & c_{13} \, \lambda^{9} \\ c_{21} \, \lambda^{4} & c_{22} \, \lambda^{3} & c_{23} \, \lambda \\ c_{31} \, \lambda^{3} & c_{32} \, \lambda^{2} & c_{33} \end{pmatrix}$$

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to LQ couplings **x**, **y** and **z**

Efficient suppression of LQ couplings to SM fermions of first generation

$$\mathbf{x} = L_e^T \, \mathbf{\hat{x}} \, L_d = \begin{pmatrix} a_{11} \, \lambda^9 & a_{12} \, \lambda^{11} & a_{13} \, \lambda^9 \\ a_{21} \, \lambda^8 & a_{22} \, \lambda^3 & a_{23} \, \lambda \\ a_{31} \, \lambda^8 & a_{32} \, \lambda^2 & a_{33} \end{pmatrix}$$
$$\mathbf{y} = R_e^T \, \mathbf{\hat{y}} \, R_u = \begin{pmatrix} b_{11} \, \lambda^9 & b_{12} \, \lambda^9 & b_{13} \, \lambda^9 \\ b_{21} \, \lambda^8 & b_{22} \, \lambda^3 & b_{23} \, \lambda^3 \\ b_{31} \, \lambda^5 & b_{32} & b_{33} \, \lambda^4 \end{pmatrix}$$
$$\mathbf{z} = L_e^T \, \mathbf{\hat{x}} \, L_u = \begin{pmatrix} c_{11} \, \lambda^9 & c_{12} \, \lambda^{10} & c_{13} \, \lambda^9 \\ c_{21} \, \lambda^4 & c_{22} \, \lambda^3 & c_{23} \, \lambda \\ c_{31} \, \lambda^3 & c_{32} \, \lambda^2 & c_{33} \end{pmatrix}$$

C. Hagedorn

Leading to LQ couplings **x**, **y** and **z**

$$\mathbf{x} = L_{e}^{T} \, \mathbf{\hat{x}} \, L_{d} = \begin{pmatrix} a_{11} \, \lambda^{9} & a_{12} \, \lambda^{11} & a_{13} \, \lambda^{9} \\ a_{21} \, \lambda^{8} & a_{22} \, \lambda^{3} & a_{23} \, \lambda \\ a_{31} \, \lambda^{8} & a_{32} \, \lambda^{2} & a_{33} \end{pmatrix}$$
$$\mathbf{y} = R_{e}^{T} \, \mathbf{\hat{y}} \, R_{u} = \begin{pmatrix} b_{11} \, \lambda^{9} & b_{12} \, \lambda^{9} & b_{13} \, \lambda^{9} \\ b_{21} \, \lambda^{8} & b_{22} \, \lambda^{3} & b_{23} \, \lambda^{3} \\ b_{31} \, \lambda^{5} & b_{32} & b_{33} \, \lambda^{4} \end{pmatrix}$$
$$\mathbf{z} = L_{e}^{T} \, \mathbf{\hat{x}} \, L_{u} = \begin{pmatrix} c_{11} \, \lambda^{9} & c_{12} \, \lambda^{10} & c_{13} \, \lambda^{9} \\ c_{21} \, \lambda^{4} & c_{22} \, \lambda^{3} & c_{23} \, \lambda \\ c_{31} \, \lambda^{3} & c_{32} \, \lambda^{2} & c_{33} \end{pmatrix}$$

Potentially relevant LQ couplings

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

LIST OF PRIMARY OBSERVABLES							
Observable	Experiment						
	Current constraint/measurement			Future reach			
R(D)	$0.339 \pm 0.026 \pm 0.014$	at 1σ level	[19]	$\pm 0.016 (0.008) \text{ for } 5 (50) \mathrm{ab}^{-1}$	[98]		
$R(D^{\star})$	$0.295 \pm 0.010 \pm 0.010$	at 1σ level	[19]	$\pm 0.009 (0.0045)$ for $5 (50) \mathrm{ab}^{-1}$	[98]		
Δa_{μ}	$(2.51\pm0.59) imes10^{-9}$	at 1σ level	[21; 57]	$\pm 0.4 imes 10^{-9}$	[99]		
${ m BR}(au o \mu \gamma)$	$4.2 imes 10^{-8}$	at 90% C.L.	[100]	$6.9 imes10^{-9}$	[101]		
${ m BR}(\mu o e \gamma)$	$4.2 imes 10^{-13}$	at 90% C.L.	[102]	$6 imes 10^{-14}$	[103]		
${ m BR}(au o 3\mu)$	$2.1 imes 10^{-8}$	at 90% C.L.	[104]	$3.6 imes10^{-10}$	[101]		
$BR(\tau \to \mu e \bar{e})$	$1.8 imes 10^{-8}$	at 90% C.L.	[104]	$2.9 imes10^{-10}$	[101]		
${ m BR}(\mu o 3e)$	$1.0 imes 10^{-12}$	at 90% C.L.	[105]	$20(1) imes 10^{-16}$	[106]		
$CR(\mu \rightarrow e; Al)$				$2.6(2.9) imes 10^{-17}$	[107; 108]		
$R_{K^{\star}}^{ u}$	2.7	at 90% C.L.	[109]	$1.0 \pm 0.25 (0.1)$ for $5 (50) \mathrm{ab}^{-1}$	[110]		
$g_{ au_A}/g_A^{ m SM}$	1.00154 ± 0.00128	at 1σ level	[111; 112]	$\pm 7.5(0.75) imes 10^{-5}$	[112 - 114]		
$ au_{B_c}^{ m SM}$	$0.52^{+0.18}_{-0.12} \ \mathrm{ps}$	at 1σ level	[115]				
$c\bar{c} ightarrow \tau\bar{\tau}$	$ b_{32} < 2.6~(\hat{m}_{\phi} = 2)$		[116; 117]				

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

 Perform numerical scan in interaction basis for all observables, also fitting charged fermion masses and quark mixing

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

 Perform numerical scan in interaction basis for all observables, also fitting charged fermion masses and quark mixing Strongest constraints

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

 Perform numerical scan in interaction basis for all observables, also fitting charged fermion masses and quark mixing Possible correlations

6th Sydney meeting

 $BR(\tau \rightarrow 3\mu)$

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

 Perform numerical scan in interaction basis for all observables, also fitting charged fermion masses and quark mixing Predictions for further observables

Summary and Outlook

- Flavour and CP symmetries are useful for understanding fermion mixing and potentially also fermion masses
- They also have considerable effect on other observables in extensions of the SM
- Three examples with interesting applications
 - Example 1: Inverse seesaw mechanism with strong suppression of charged lepton flavour violating processes
 - Example 2: Low-scale seesaw mechanism with strongly degenerate RH neutrino masses and generation of BAU possibly correlated with low energy CP phases
 - Example 3: Model with leptoquark for explanation of *R(D)*, *R(D*)* and the anomalous magnetic moment of the muon, while passing all other experimental bounds and making testable predictions

C. Hagedorn

Summary and Outlook

- Example 1: Explore other versions of symmetry breaking and variants of the inverse seesaw mechanism
- Example 2: Explore phenomenology of heavy neutral leptons and variants of the low-scale type I seesaw mechanism
- Example 3: Extend in order to include neutrino masses and lepton mixing
- One can think about embedding the examples in larger frameworks
- And obviously flavour and CP symmetries can be applied to many more extensions of the SM

Many thanks for your attention!

6th Sydney meeting

C. Hagedorn

. . .

Back-up slides

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Back to light neutrinos

... go beyond leading order

- potentially new contributions to m_{ν}
- effects of non-unitarity

$$m_{\nu}^{1} = -\frac{1}{2} m_{D} \left(M_{NS}^{-1} \right)^{T} \left[\mu_{S} M_{NS}^{-1} m_{D}^{T} m_{D}^{\star} \left(M_{NS}^{-1} \right)^{\dagger} + \left(M_{NS}^{-1} \right)^{\star} m_{D}^{\dagger} m_{D} \left(M_{NS}^{-1} \right)^{T} \mu_{S} \right] M_{NS}^{-1} m_{D}^{T}$$

$$m_{\nu}^{1} = -\frac{y_{0}^{4} v^{4}}{4 M_{0}^{4}} \mu_{S} = -\frac{y_{0}^{4} v^{4}}{4 M_{0}^{4}} U_{S}^{\star} \begin{pmatrix} \mu_{1} & 0 & 0 \\ 0 & \mu_{2} & 0 \\ 0 & 0 & \mu_{3} \end{pmatrix} U_{S}^{\dagger}$$

Compare to

$$m_{\nu} = \frac{y_0^2 v^2}{2 M_0^2} \mu_S = \frac{y_0^2 v^2}{2 M_0^2} U_S^{\star} \left(\begin{array}{ccc} \mu_1 & 0 & 0\\ 0 & \mu_2 & 0\\ 0 & 0 & \mu_3 \end{array}\right) U_S^{\dagger}$$

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Back to light neutrinos

... go beyond leading order

- potentially new contributions to m_{ν}
- effects of non-unitarity

$$\widetilde{U}_{\mathrm{PMNS}} = \left(\mathbb{1} - \eta\right) U_0$$

$$\eta = \frac{1}{2} \, m_D^\star \left(M_{NS}^{-1} \right)^\dagger M_{NS}^{-1} \, m_D^T$$

$$\eta = \frac{y_0^2 \, v^2}{4 \, M_0^2} \, \mathbb{1} \equiv \eta_0 \, \mathbb{1}$$

Compare to

$$\widetilde{U}_{\mathrm{PMNS}} = \Omega(\mathbf{3}) R_{fh}(\theta_S)$$

C. Hagedorn

Universal effect in flavour α and for different patterns Case 1) Case 2) Case 3 a) Case 3 b.1) 6th Sydney meeting

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Effect on lepton mixing

Case 1)

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Effect on lepton mixing

Case 1)

$$\sin^2\theta_{12} \approx \frac{1}{3} \left(1 + \sin^2\theta_{13}\right)$$

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Effect on lepton mixing

Case 1)

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Effect on lepton mixing

Case 1) πs $\sin \alpha = -\sin 6 \, \phi_s$ $\phi_s =$ $y_0 = 0.1$ n-1 $y_0 = 0.5$ $\Delta \sin lpha / rac{2}{2}$ 1.0 $M_0 = 5 \,\mathrm{TeV}$ M_0 $= 0.5 \, \mathrm{Te}^{-1}$ 0.5-4 $\sin \alpha$ 0 -53000 0 5001000 15002000 25003500 M_0 / GeV -0.5 $M_0 = 1 \,{
m TeV}$ -1.0 -0.40.80.20.6 1.0 0 $\frac{s}{n}$ $y_0 = 1$

6th Sydney meeting

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

Effect on lepton mixing

C. Hagedorn Analysis also performed for **Case 3 a) Case 3 b.1**) 6th Sydney meeting

Case 1)

C. Hagedorn

6th Sydney meeting

Way towards capturing main dependencies analytically

- CP-violating combinations
- washout parameter

CP-violating combinations:see for related work Hernandez et al. ('15)Perturbatively solve quantum kinetic equations in H_N and Γ Leading term for lepton asymmetries

$$\operatorname{Tr}\left[\tilde{\Gamma}_{\alpha}(\bar{\rho}_{N}-\rho_{N})\right]\propto\operatorname{Tr}\left(\tilde{\Gamma}_{\alpha}\left[H_{N},\Gamma\right]\right)$$
 with $\alpha=e,\mu,\tau.$

Three types of CP-violating combinations are found

$$C_{\rm LFV,\alpha} = i \operatorname{Tr} \left(\begin{bmatrix} \hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \end{bmatrix} \hat{Y}_{D}^{\dagger} P_{\alpha} \hat{Y}_{D} \right),$$

$$C_{\rm LNV,\alpha} = i \operatorname{Tr} \left(\begin{bmatrix} \hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \end{bmatrix} \hat{Y}_{D}^{T} P_{\alpha} \hat{Y}_{D}^{*} \right),$$

$$C_{\rm DEG,\alpha} = i \operatorname{Tr} \left(\begin{bmatrix} \hat{Y}_{D}^{T} \hat{Y}_{D}^{*}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \end{bmatrix} \hat{Y}_{D}^{T} P_{\alpha} \hat{Y}_{D}^{*} \right)$$

$$6 \text{th Sy}$$

C. Hagedorn

$$\begin{split} C_{\mathrm{LFV},\alpha} &= i \operatorname{Tr} \left(\left[\hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \right] \hat{Y}_{D}^{\dagger} P_{\alpha} \hat{Y}_{D} \right), \\ C_{\mathrm{LNV},\alpha} &= i \operatorname{Tr} \left(\left[\hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \right] \hat{Y}_{D}^{T} P_{\alpha} \hat{Y}_{D}^{*} \right), \\ C_{\mathrm{DEG},\alpha} &= i \operatorname{Tr} \left(\left[\hat{Y}_{D}^{T} \hat{Y}_{D}^{*}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \right] \hat{Y}_{D}^{T} P_{\alpha} \hat{Y}_{D}^{*} \right) \end{split}$$

with

$$P_e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , P_{\mu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} , P_{\tau} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and in mass basis of heavy states, i.e.

$$\hat{Y}_D = Y_D U_R$$

$$U_R = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & i \\ 0 & 1 & -i \end{pmatrix}$$

C. Hagedorn

$$C_{
m LFV,lpha} \;\; = \;\; i \, {
m Tr} \Big(\left[\hat{M}_R^2, \hat{Y}_D^\dagger \, \hat{Y}_D
ight] \, \hat{Y}_D^\dagger \, P_lpha \, \hat{Y}_D \Big)$$

Note the following

- Dominant combination when *N_i* are in relativistic regime
- Only leads to lepton flavour asymmetry, since

$$\sum_{\alpha} C_{\rm LFV,\alpha} = 0.$$

• Crucially depends on a flavoured washout

$$C_{
m LFV,lpha} \;\; = \;\; i \, {
m Tr} \Big(\left[\hat{M}_R^2, \hat{Y}_D^\dagger \, \hat{Y}_D
ight] \, \hat{Y}_D^\dagger \, P_lpha \, \hat{Y}_D \Big)$$

Note the following

- Dominant combination when *N_i* are in relativistic regime
- Only leads to lepton flavour asymmetry, since

$$\sum_{lpha} C_{
m LFV,lpha} = 0.$$

Crucially depends on a flavoured washout

$$C_{\mathrm{LNV},lpha} \;\; = \;\; i \, \mathrm{Tr} \Big(\left[\hat{M}_R^2, \hat{Y}_D^\dagger \, \hat{Y}_D
ight] \, \hat{Y}_D^T \, P_lpha \, \hat{Y}_D^* \Big)$$

Note the following

- Sizeable for intermediate / larger masses of N_i
- Directly violates lepton number with

$$C_{\rm LNV} = \sum_{\alpha} C_{\rm LNV,\alpha} \neq 0$$

6th Sydney meeting

compare to flavoured decay asymmetries $\epsilon_{i\alpha}$ see Dev et al. ('17)

C. Hagedorn

$$C_{\text{DEG},\alpha} = i \operatorname{Tr} \left(\left[\hat{Y}_D^T \, \hat{Y}_D^*, \hat{Y}_D^\dagger \, \hat{Y}_D \right] \, \hat{Y}_D^T \, P_\alpha \, \hat{Y}_D^* \right)$$

Note the following

- Only this CP-violating combination could be non-zero for zero splitting
- Only possible at intermediate temperatures $M/T \sim 1$
- Only leads to lepton flavour asymmetry, since

 $\sum_{\alpha} C_{\text{DEG},\alpha} = 0.$

Furthermore, for the limit $\lambda \ll \kappa \lesssim 1$ consider subset of two mass-degenerate states. Define $(\hat{Y}_{(23)})_{\alpha i} = (\hat{Y}_D)_{\alpha i}$ for $i \in \{2,3\}$

For $\lambda = 0$ we only need

$$C_{\text{DEG},\alpha}^{(23)} = i \operatorname{Tr} \left(\left[\hat{Y}_{(23)}^T \, \hat{Y}_{(23)}^*, \hat{Y}_{(23)}^\dagger \, \hat{Y}_{(23)} \right] \, \hat{Y}_{(23)}^T \, P_\alpha \, \hat{Y}_{(23)}^* \right)$$

Clearly,

$$\sum_{lpha} C^{(23)}_{\mathrm{DEG},lpha} = 0.$$

C. Hagedorn

Way towards capturing main dependencies analytically

- CP-violating combinations
- washout parameter

Flavoured washout parameter:

$$f_{\alpha} = \frac{(\hat{Y}_D \hat{Y}_D^{\dagger})_{\alpha \alpha}}{\text{Tr}\left(\hat{Y}_D \hat{Y}_D^{\dagger}\right)}$$

C. Hagedorn

Overview over results

Type of mixing pattern	BAU non-zero	BAU non-zero	Large total mixing	
	for $\kappa = 0$?	for large κ ?	angle U^2 possible?	
Case 1)	No, see Fig. 4	Yes, see Fig. 4	Yes, for $\cos 2\theta_R \approx 0$	
			see Fig. 9	
Case 2), t even	No, see Fig. 12	No, see Fig. 12	No	
Case 2), t odd	Yes, for $m_0 \neq 0$	Yes, see Fig. 16	Yes, for $\sin 2\theta_R \approx 0$	
	see Fig. 17, plot (a)		see Fig. 19	
Case 3 b.1), m and s even	No, see Fig. 20	No, see Fig. 20	No	
Case 3 b.1), m even, s odd	Yes, see Fig. 22	No, see Fig. 22	Yes, for $\cos 2\theta_R \approx 0$	
	except for strong IO		see Fig. 25	
Case 3 b.1), m odd, s even	Yes, see Fig. 26	Yes, see Fig. 26	Yes, for $\cos 2 \theta_R \approx 0$	
	except for strong IO			
Case 3 b.1), m and s odd	No	No	No	

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to charged fermion masses ... all consistent with data

$$\begin{split} m_u &= \left| f_{11} \,\lambda^8 + \mathcal{O}(\lambda^{10}) \right| \, \left\langle H_u^0 \right\rangle \,, \\ m_c &= \left| f_{22} \,\lambda^4 + \left(\frac{f_{12}^2}{2 \, f_{22}} - \frac{f_{23} f_{32}}{f_{33}} \right) \,\lambda^6 + \mathcal{O}(\lambda^8) \right| \, \left\langle H_u^0 \right\rangle \\ m_t &= \left| f_{33} + \frac{f_{23}^2}{2 \, f_{33}} \,\lambda^4 + \mathcal{O}(\lambda^8) \right| \, \left\langle H_u^0 \right\rangle \,. \end{split}$$

$$\begin{split} m_d &= \left| d_{11} \,\lambda^4 + \mathcal{O}(\lambda^{12}) \right| \, \left\langle H_d^0 \right\rangle \,, \\ m_s &= \left| d_{22} \,\lambda^2 - \frac{d_{23}(d_{22}d_{23} + 2\,d_{32}d_{33})}{2\,d_{33}^2} \,\lambda^6 + \mathcal{O}(\lambda^{10}) \right| \, \left\langle H_d^0 \right\rangle \\ m_b &= \left| d_{33} + \frac{d_{23}^2}{2\,d_{33}} \,\lambda^4 + \mathcal{O}(\lambda^8) \right| \, \left\langle H_d^0 \right\rangle \,, \end{split}$$

$$m_{e} = |e_{11} \lambda^{4} + o(\lambda^{12})| \langle H_{d}^{0} \rangle ,$$

$$m_{\mu} = |e_{22} \lambda^{2} - \frac{e_{23}(e_{22}e_{23} + 2e_{32}e_{33})}{2e_{33}^{2}} \lambda^{4} + \mathcal{O}(\lambda^{6})| \langle H_{d}^{0} \rangle$$

$$m_{\tau} = |e_{33} + \frac{e_{23}^{2}}{2e_{33}} \lambda^{2} + \mathcal{O}(\lambda^{4})| \langle H_{d}^{0} \rangle .$$
Potentially
relevant
contribution
from LQ
Sydney meeting

C. Hagedorn

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to quark mixing

 $V_{
m CKM} = L_u^{\dagger} L_d =$

$$\begin{array}{cccc} & 1 - \frac{f_{12}^2}{2f_{22}^2} \lambda^2 + \mathcal{O}(\lambda^4) & & -\frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^3) & & \frac{f_{12}(d_{33}f_{23} - d_{23}f_{33})}{d_{33}f_{22}f_{33}} \lambda^3 + \mathcal{O}(\lambda^5) \\ & \frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^3) & & 1 - \frac{f_{12}^2}{2f_{22}^2} \lambda^2 + \mathcal{O}(\lambda^4) & & \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right) \lambda^2 + \mathcal{O}(\lambda^4) \\ & \frac{d_{22}d_{33}f_{13} - d_{12}d_{33}f_{23} - d_{13}d_{22}f_{33} + d_{12}d_{23}f_{33}}{d_{22}d_{33}f_{33}} \lambda^8 + \mathcal{O}(\lambda^9) & - \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right) \lambda^2 + \mathcal{O}(\lambda^6) & 1 - \frac{(d_{33}f_{23} - d_{23}f_{33})^2}{2d_{33}^2f_{33}^2} \lambda^4 + \mathcal{O}(\lambda^8) \end{array} \right)$$

 V_{td} too small

Consequently, also J_{CP} suppressed Note also strong correlation

$$|V_{ub}| \approx \left|\frac{f_{12}}{f_{22}} \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right)\right| \lambda^3 \approx |V_{us}| |V_{cb}|$$

C. Hagedorn
Example 3: Model with leptoquark

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to quark mixing

 $V_{
m CKM} = L_u^{\dagger} L_d =$

$$\begin{array}{cccc} & 1 - \frac{f_{12}^2}{2f_{22}^2} \,\lambda^2 + \mathcal{O}(\lambda^4) & & -\frac{f_{12}}{f_{22}} \,\lambda + \mathcal{O}(\lambda^3) & & \frac{f_{12}(d_{33}f_{23} - d_{23}f_{33})}{d_{33}f_{22}f_{33}} \,\lambda^3 + \mathcal{O}(\lambda^5) \\ & \frac{f_{12}}{f_{22}} \,\lambda + \mathcal{O}(\lambda^3) & & 1 - \frac{f_{12}^2}{2f_{22}^2} \,\lambda^2 + \mathcal{O}(\lambda^4) & & \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right) \,\lambda^2 + \mathcal{O}(\lambda^4) \\ & \frac{d_{22}d_{33}f_{13} - d_{12}d_{33}f_{23} - d_{13}d_{22}f_{33} + d_{12}d_{23}f_{33}}{d_{22}d_{33}f_{33}} \,\lambda^8 + \mathcal{O}(\lambda^9) & - \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right) \,\lambda^2 + \mathcal{O}(\lambda^6) & 1 - \frac{(d_{33}f_{23} - d_{23}f_{33})^2}{2\,d_{33}^2 f_{33}^2} \,\lambda^4 + \mathcal{O}(\lambda^8) \end{array} \right)$$

 V_{td} too small

Consequently, also J_{CP} suppressed Note also strong correlation Source of problem

$$|V_{ub}| \approx \left| \frac{f_{12}}{f_{22}} \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}} \right) \right| \lambda^3 \approx |V_{us}| |V_{cb}|$$

$$M_{u} = \begin{pmatrix} f_{11} \lambda^{8} & f_{12} \lambda^{5} & f_{13} \lambda^{8} \\ f_{21} \lambda^{10} & f_{22} \lambda^{4} & f_{23} \lambda^{2} \\ f_{31} \lambda^{12} & f_{32} \lambda^{4} & f_{33} \end{pmatrix} \langle H_{u}^{0} \rangle$$

Scenario A

C. Hagedorn

6th Sydney meeting

Example 3: Model with leptoquark

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to quark mixing

 $V_{
m CKM} = L_u^{\dagger} L_d =$

$$\begin{array}{cccc} & 1 - \frac{f_{12}^2}{2f_{22}^2} \lambda^2 + \mathcal{O}(\lambda^4) & & -\frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^3) & & \frac{f_{12}(d_{33}f_{23} - d_{23}f_{33})}{d_{33}f_{22}f_{33}} \lambda^3 + \mathcal{O}(\lambda^5) \\ & \frac{f_{12}}{f_{22}} \lambda + \mathcal{O}(\lambda^3) & & 1 - \frac{f_{12}^2}{2f_{22}^2} \lambda^2 + \mathcal{O}(\lambda^4) & & \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right) \lambda^2 + \mathcal{O}(\lambda^4) \\ & \frac{d_{22}d_{33}f_{13} - d_{12}d_{33}f_{23} - d_{13}d_{22}f_{33} + d_{12}d_{23}f_{33}}{d_{22}d_{33}f_{33}} \lambda^8 + \mathcal{O}(\lambda^9) & - \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right) \lambda^2 + \mathcal{O}(\lambda^6) & 1 - \frac{(d_{33}f_{23} - d_{23}f_{33})^2}{2d_{33}^2f_{33}^2} \lambda^4 + \mathcal{O}(\lambda^8) \end{array} \right)$$

 V_{td} too small

Consequently, also J_{CP} suppressed Note also strong correlation

$$|V_{ub}| \approx \left| \frac{f_{12}}{f_{22}} \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}} \right) \right| \lambda^3 \approx |V_{us}| |V_{cb}|$$

Cure — ad hoc contribution ... difficult to achieve alone here

$$M_{u} = \begin{pmatrix} f_{11} \lambda^{8} & f_{12} \lambda^{5} & \tilde{f}_{13} \lambda^{3} \\ f_{21} \lambda^{10} & f_{22} \lambda^{4} & f_{23} \lambda^{2} \\ f_{31} \lambda^{12} & f_{32} \lambda^{4} & f_{33} \end{pmatrix} \langle H_{u}^{0} \rangle$$
Scenario B

C. Hagedorn

6th Sydney meeting

Example 3: Model with leptoquark

[I. Bigaran, T. Felkl, CH, M.A. Schmidt ('22)]

Leading to quark mixing

$V_{\rm CKM} =$

$$\begin{pmatrix} 1 - \frac{f_{12}^2}{2f_{22}^2}\lambda^2 + \mathcal{O}(\lambda^4) & -\frac{f_{12}}{f_{22}}\lambda + \mathcal{O}(\lambda^3) & \left(\frac{f_{12}(d_{33}f_{23} - d_{23}f_{33})}{d_{33}f_{22}f_{33}} - \frac{\tilde{f}_{13}}{f_{33}}\right)\lambda^3 + \mathcal{O}(\lambda^5) \\ \frac{f_{12}}{f_{22}}\lambda + \mathcal{O}(\lambda^3) & 1 - \frac{f_{12}^2}{2f_{22}^2}\lambda^2 + \mathcal{O}(\lambda^4) & \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right)\lambda^2 + \mathcal{O}(\lambda^4) \\ \frac{\tilde{f}_{13}}{f_{33}}\lambda^3 + \mathcal{O}(\lambda^7) & -\left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}}\right)\lambda^2 + \mathcal{O}(\lambda^6) & 1 - \frac{(d_{33}f_{23} - d_{23}f_{33})^2}{2d_{33}^2f_{33}^2}\lambda^4 + \mathcal{O}(\lambda^6) \end{pmatrix} \end{pmatrix}$$

 V_{td} OK, also J_{CP} OK Also the correlation is relaxed

$$|V_{ub}| \approx \left| \frac{f_{12}}{f_{22}} \left(\frac{d_{23}}{d_{33}} - \frac{f_{23}}{f_{33}} \right) + \frac{\tilde{f}_{13}}{f_{33}} \right| \lambda^3$$

Cure — ad hoc contribution ... difficult to achieve alone here

$$M_{u} = \begin{pmatrix} f_{11} \lambda^{8} & f_{12} \lambda^{5} & \tilde{f}_{13} \lambda^{3} \\ f_{21} \lambda^{10} & f_{22} \lambda^{4} & f_{23} \lambda^{2} \\ f_{31} \lambda^{12} & f_{32} \lambda^{4} & f_{33} \end{pmatrix} \langle H_{u}^{0} \rangle$$

C. Hagedorn

6th Sydney meeting