Probing the early universe with SGWB

Ameek Malhotra UNSW Sydney

Sydney CPPC meeting 2023

nononing sining and

Direct observation with gravitational waves

Observation with light

- SGWB overview
- SGWB properties
 - Anisotropies
 - Spectral Shape
 - Non-Gaussianity
- Summary

2

Stochastic GW backgrounds appear similar to noise

SGWB detected by correlating outputs of multiple interferometers

$$\langle d_I d_J \rangle = \langle h_I h_J \rangle + \langle N_I N_J \rangle$$

[Images: A. Stuver/LIGO]

SGWB Landscape

4

SGWB Characterisation

- SGWB characterised in terms of statistical properties:
 - Intensity/energy density $\Omega_{
 m GW} \propto h^2$
 - Spectral shape $\Omega_{\rm GW}(f)$
 - Anisotropies $\delta \Omega_{GW}(f, \hat{n})$
 - non-Gaussianity (*hhh*)...
 - Polarisation (circular/linear)

SGWB Characterisation

- Understanding these properties important for identifying origin of SGWB
- This is relevant already, not just for 3G detectors!

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wa					
NANOGrav Collaboration • Gabriella Agazie et al. (Jun 28, 2023)					
Published in: Astrophys. J. Lett. 951 (2023) 1, L8 • e-Print: 2306.16213 [astro-					
🔓 pdf	Ø DOI	[→ cite	🗟 claim	Ē	

50+ cosmological scenarios explaining the PTA signal amplitude and slope

SGWB Characterisation

- Currently PTA data is consistent with isotropy
- Cosmological SGWB anisotropies much smaller than astrophysical
- Anisotropies may help distinguish cosmological vs astrophysical origin of signal

NANOGrav 15-year Anisotropic Gravitational-Wave Background

SGWB Anisotropies

GW Production

Primordial source properties imprinted on anisotropies (Inflation, PT, PBH...)

See review by LISA CosWG (2022)

GW Propagation

Propagation through large scale density perturbations

Today

SGWB Anisotropies

Zeroth order term + perturbation

$$f(\eta, \vec{q}, \vec{x}) \equiv \overline{f}(\eta, q) - \frac{\Gamma(\eta, \vec{x}, q, \hat{n})}{d \ln q}$$

The isotropic and anisotropic parts of the energy density are

$$\bar{\Omega}_{\rm GW} = \frac{4\pi}{\rho_{\rm cr}} \left(\frac{q}{a_0}\right)^4 \bar{f}(\eta, q) ,$$

[Alba & Maldacena 2015, Contaldi 2017; Bartolo et al. 2019a, 2019b]

$$\delta_{\rm GW} = \left[4 - \frac{\partial \ln \bar{\Omega}_{\rm GW}(q)}{\partial \ln q} \right] \Gamma(\eta, \vec{x}, q, \hat{n})$$

SGWB line-of-sight formalism

In terms of Newtonian gauge potentials

$$\underbrace{\Gamma(\eta_0, k, f, \hat{n})}_{\text{``}\Delta T/T" \text{ for GW}} = \Gamma_I + \Phi_I + \int_{\eta_i}^{\eta_0} d\eta \left\{ \Phi'(k, \eta) + \Psi'(k, \eta) \right\} e^{-i\hat{k}\cdot\hat{n}(\eta_0 - \eta)}$$

 $\Gamma_I \equiv \Gamma(\eta_i, k, f, \hat{n}) \rightarrow \text{initial perturbation}$ $\Phi_I \equiv \Phi(k, \eta_i) \to SW$ $\Phi'(k,\eta) + \Psi'(k,\eta) \rightarrow$ ISW

[Alba & Maldacena 2015, Contaldi 2017; Bartolo et al. 2019a, 2019b]

Adiabatic initial conditions

• Adiabaticity
$$\rightarrow \left| \frac{\delta \rho_{\rm GW}}{\rho_{\rm GW}} \right|_{I} = \frac{\delta \rho_{\rm r}}{\rho_{\rm r}} \right|_{I}$$

SGWB anisotropies independent of initial w for adiabatic I.C.

$$C_{\ell}^{\Gamma} \propto \left[-\frac{1}{3} \zeta j_{\ell}(k\eta_0) + \text{ISW} \right]$$

[AM, Dimastrogiovanni, Doménech, Fasiello and Tasinato PRD 107 (2023) 10, 103502]

Isocurvature via curvaton mechanism

- Additional subdominant scalar field besides the inflaton [Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi (2002)]
- Post-inflation, it behaves like dust and may dominate the energy density of the universe
- Resulting isocurvature depends on the decay products of the curvaton

$$S_{\rm GW,r} \equiv \left(\frac{\delta \rho_{\rm GW}}{\rho_{\rm GW}} - \frac{\delta \rho_{\rm r}}{\rho_{\rm r}}\right) \neq$$

GW isocurvature w.r.t radiation

Curvaton scenario

- Curvaton dominates $\rho_{\rm tot}$ then decays entirely into radiation
- Fluctuation amplitude fixed by CMB normalisation

$$C_{\ell}^{\Gamma} \propto \left[-\frac{4}{3} \zeta_r j_{\ell} [k\eta_0] \right]$$

4x adiabatic term

Curvaton scenario II

- Curvaton remains subdominant and decays entirely into GW
- Fluctuation amplitude not fixed

$$C_{\ell}^{\Gamma} \propto \left\{ \left[\begin{array}{c} \frac{(1+w_{\chi})}{(1+w_{r})} \zeta_{\chi} & -\frac{1}{3}\zeta_{r} \right] j \right\}$$

independent curvaton fluctuations

Curvaton anisotropies

[AM, Dimastrogiovanni, Doménech, Fasiello and Tasinato PRD 107 (2023) 10, 103502]

Inflationary Perturbations

Scalar amplitude and tilt measured precisely on large scales, explained well by SFSR models

Inflationary Perturbations

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + \left(e^{\frac{2\zeta}{\delta_{ij}}} \delta_{ij} + \frac{h_{ij}}{\delta_{ij}} \right) dx^{i} dx^{j} \right]$

Not detected so far

B-modes and GW

GW lead to **B-mode** polarisation of CMB

Credit: LiteBIRD collaboration [arxiv:2202.02773]

SFSR consistency

SFSR also predicts $n_{\rm T} = -r/8$, however, this will be hard to test.

CMB-S4 collaboration

Deviations from SFSR consistency

- Possible to test for deviations

[Dimastrogiovanni et al. 2016, Thorne et al. 2017 + more]

$$\left[\partial_{\eta}^{2} + k^{2} \pm \frac{2k\xi}{\eta}\right] A_{\pm}(k,\eta) = 0,$$

e.g. Models involving axion + gauge fields may produce a bump like feature

Current constraints

$$\mathcal{P}_h = r_{\rm pk} A_s \exp\left[-\frac{\ln(k/k_{\rm pk})^2}{2\sigma^2}\right]$$

Parameter	68% limit
σ	< 4.83
$r_{ m pk}$	< 0.0460

[Hamann and **AM**, *JCAP* 12 (2022) 015]

Current constraints

$$\mathcal{P}_h = r_{\rm pk} A_s \exp\left[-\frac{\ln(k/k_{\rm pk})^2}{2\sigma^2}\right]$$

Parameter	68% limit
σ	< 4.83
$r_{ m pk}$	< 0.0460

[Hamann and **AM**, *JCAP* 12 (2022) 015]

Forecasts with LiteBIRD + CMB-S4 $2 < \ell < 200$ $30 < \ell < 330$

Credit: LiteBIRD collaboration

Late 2020s

CMB-S4 (SPT+)

Small scale feature

Delensing important for small scale features

23

SFSR fluctuations are **Gaussian**.

GW may also be sourced by additional fields (or other non-standard dynamics)

$$h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2 h_{ij} = 16\pi a^2 G \Pi_{ij}^{\mathrm{TT}}$$

hints to nature of interactions —"cosmological collider physics"

[Noumi et al. (2012); Arkani-Hamed, Maldacena (2015); Kehagias, Riotto (2015); Lee et al. (2016)+more!]

Non-Gaussianity provides additional information beyond power spectrum,

Tensor NG probes

$\langle BBB \rangle, \langle BBT \rangle \dots$

$k_{\rm CMB} \sim 10^{-3} {\rm Mpc}^{-1}$

$k_{\rm GW} \sim 10^{12} {\rm Mpc}^{-1}$

 $\Delta N \sim 30$

Direct detection of tensor NG

- Unfortunately, interferometers cannot directly measure NG of h
- Decorrelation due to propagation effects Gaussianizes the signal
- Observed $\langle h^{2n+1} \rangle$ vanishes for the SGWB [Bartolo et al. (2018), Margalit et al. (2020)]

Direct detection of tensor NG

- Unfortunately, interferometers cannot directly measure NG of h
- Decorrelation due to propagation effects Gaussianizes the signal
- Observed $\langle h^{2n+1} \rangle$ vanishes for the SGWB [Bartolo et al. (2018), Margalit et al. (2020)]

How do we get around this?

NG via SGWB anisotropies

[AM, Dimastrogiovanni, Fasiello, Shiraishi JCAP 03 (2021) 088] [Dimastrogiovanni, Fasiello, AM, Orlando, Meerburg JCAP 02 (2022) 02, 040] $F_{\rm NL} = \frac{B_{Xhh}(k_L, k_{\rm GW})}{P_X(k_L)P_h(k_{\rm GW})}$

- SGWB a promising probe of primordial physics missing piece of inflationary puzzle
- characterising the SGWB
- near future

Spectral shape, non-Gaussianity, anisotropies and polarisation are key to

Exciting results from PTAs and hopefully from CMB + interferometers in the