Search for lepton flavour violation with $B^0 \rightarrow \tau \ell \; (\ell = e, \mu)$ at Belle II

Priyanka Cheema, Bruce Yabsley, Chia-Ling Hsu (University of Sydney)

6th Sydney CPPC Meeting - 27/07/23

LEPTON FLAVOUR VIOLATION (LFV)

Flavour Mixing in the SM

Quark flavour mixing described by CKM matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Neutral lepton (neutrino) flavour mixing described by PMNS matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{\mu1} & U_{\tau1} \\ U_{e2} & U_{\mu2} & U_{\tau2} \\ U_{e3} & U_{\mu3} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

- Charged lepton flavour mixing must occur due to electroweak couplings between neutral and charged leptons
 - \rightarrow However CLFV processes dominated by scale of neutrino masses
 - ightarrow CLFV in the SM has BFs beyond future experimental sensitivities e.g.

$$\mathcal{B}(\mu
ightarrow e \gamma)_{\rm SM} \sim \mathcal{O}(10^{-54})$$

Observation of a CLFV decay is unambiguous evidence of new physics!

The $B^0 o au \ell$ Decay

In the SM, $B^0
ightarrow au\ell$ can only occur through neutrino oscillations (×)

PAST SEARCHES

Past Searches: world best limit on BF set by Belle (LHCb) for $\ell = e(\mu)$ mode

	CLEO (2004)	BaBar (2007)	LHCb (2019)	Belle (2021)
Sample size	$9.2 \ {\rm fb}^{-1}$	342 fb^{-1}	3 fb^{-1}	$711 \ {\rm fb}^{-1}$
$N_{B\overline{B}}$	9.6×10^6	378×10^6	?	772×10^6
$\mathcal{B}^{\rm UL}(B^0\to e^\pm\tau^\mp)$	$<1.1\times10^{-4}$	$<2.8\times10^{-5}$	-	$<1.6\times10^{-5}$
$\mathcal{B}^{\rm UL}(B^0\to\mu^\pm\tau^\mp)$	$< 3.8 \times 10^{-5}$	$<2.2\times10^{-5}$	$< 1.2 \times 10^{-5}$	$<1.5\times10^{-5}$

• BaBar

Hadronic B_{tag} reconstruction + fit to signal lepton momentum in B_{sig} frame (p_{ℓ}^{B})

PAST SEARCHES

Past Searches: world best limit on BF set by Belle (LHCb) for $\ell = e(\mu)$ mode

	CLEO (2004)	BaBar (2007)	LHCb (2019)	Belle (2021)
Sample size	$9.2 \; {\rm fb}^{-1}$	$342 \ {\rm fb}^{-1}$	3 fb^{-1}	$711 \ {\rm fb}^{-1}$
$N_{B\overline{B}}$	9.6×10^6	378×10^6	?	772×10^6
$\mathcal{B}^{\rm UL}(B^0\to e^\pm\tau^\mp)$	$<1.1\times10^{-4}$	$<2.8\times10^{-5}$	-	$< 1.6 \times 10^{-5}$
$\mathcal{B}^{\rm UL}(B^0\to\mu^\pm\tau^\mp)$	$< 3.8 \times 10^{-5}$	$<2.2\times10^{-5}$	$< 1.2 \times 10^{-5}$	$<1.5\times10^{-5}$

• <u>Belle</u>

Hadronic B_{tag} reconstruction + do not reconstruct τ in specific channels (inclusive), instead fit to the missing mass which is peaked at m_{τ}

PAST SEARCHES

Past Searches: world best limit on BF set by Belle (LHCb) for $\ell = e(\mu)$ mode

	CLEO (2004)	BaBar (2007)	LHCb (2019)	Belle (2021)
Sample size	$9.2 \ {\rm fb}^{-1}$	342 fb^{-1}	3 fb^{-1}	$711 \ {\rm fb}^{-1}$
$N_{B\overline{B}}$	9.6×10^6	378×10^6	?	772×10^6
$\mathcal{B}^{\mathrm{UL}}(B^0 \to e^\pm \tau^\mp)$	$<1.1\times10^{-4}$	$<2.8\times10^{-5}$	-	$<1.6\times10^{-5}$
$\mathcal{B}^{\rm UL}(B^0\to\mu^\pm\tau^\mp)$	$< 3.8 \times 10^{-5}$	$<2.2\times10^{-5}$	$< 1.2 \times 10^{-5}$	$<1.5\times10^{-5}$

- <u>BaBar</u> hadronic B_{tag} reconstruction + fit to signal lepton momentum in B_{sig} frame $(p_{\ell}^{B}) \rightarrow reconstruction efficiency = 0.027\% (0.032\%)$ for $\ell = \mu (\ell = e)$
- <u>Belle</u> hadronic B_{tag} reconstruction + do not reconstruct τ in specific channels (inclusive), instead fit to the missing mass which is peaked at $m_{\tau} \rightarrow$ reconstruction efficiency = 0.11% (0.098%) for $\ell = \mu$ ($\ell = e$)

Our Approach: hadronic B_{tag} reconstruction using the FEI + reconstruction of the τ \rightarrow **different fitting regions** for leptonic (p_{ℓ}^{B}) and hadronic $(p_{\ell}^{B}, \Delta E_{\tau}) \tau$ modes

$$\Delta E_{\tau} = \sum_{i} E_{\pi_{i}} + p_{\nu} - 1.777 \text{ GeV} \quad (\text{in } \tau \text{ frame})$$

au Reconstruction and Cross-Feed

Exclusive au Reconstruction: ~ 92% of the au branching fraction reconstructed

- Leptonic Modes are $e\nu\nu$, $\mu\nu\nu$
- Hadronic Modes are $h\nu$, $h\pi^0\nu$, $h\pi^0\pi^0\nu$, $hhh\nu$ ($h = \pi$, K)

$B^0 \rightarrow e^+ \tau^-$ Mode

$B^0 \rightarrow \mu^+ \tau^-$ Mode

Generated	π	Recons $\pi\pi^0$	structed $\pi\pi^0\pi^0$	$\pi\pi\pi$	-	Generated	π	Recons $\pi\pi^0$	tructed $\pi\pi^0\pi^0$	$\pi\pi\pi$
π	6793	246	28	12	-	π	7650	254	23	8
$\pi\pi^0$	4590	10160	1901	170		$\pi\pi^0$	5228	11553	1942	173
$\pi\pi^0\pi^0$	479	2007	2857	59		$\pi\pi^0\pi^0$	586	2274	3086	63
$\pi\pi\pi$	1501	898	317	3775		$\pi\pi\pi$	1698	960	401	4301

Highlighted issues:

- Lost one π^0
- + Lost at least one π track
- \cdot Incorrectly added one π^0

Signal Regions - $B^0 ightarrow e^+ au^-$ Mode

Signal Regions - $B^0 ightarrow e^+ au^-$ Mode

Three Categories

- 1. Two true leptons e.g. $B \rightarrow D(\rightarrow K^0_l \ell \nu) \ell \nu$
- 2. One or more fake leptons due to mis-id e.g. $B
 ightarrow \pi \ell
 u$
- 3. J/ψ decays e.g. $B \rightarrow J/\psi (\rightarrow ee) K_L^0$

$E_{\rm extra}$ For Leptonic SR

Idea: add $2^{\rm nd}$ fitting variable for leptonic au modes

Candidate Variable

- + $E_{\rm extra}$ which is the residual energy in the electromagnetic calorimeter
- Signal events should peak at 0 due to correct reconstruction
- Background events peak at higher values

Signal distribution broadens due to:

- Beam background
- Fake photons e.g. hadronic split-offs, clustering failures

Remove these from E_{extra}

 \rightarrow signal and background is easier to distinguish

$E_{\rm extra}$ Clean-Up MVAs

Beam Background BDT Features

- Energy, timing and polar angle of the cluster
- Output of a separate MVA that characterises cluster shapes
- Output of a separate MVA that uses **pulse-shape information** from activated ECL crystals, where class 0 = hadronic showers and class 1 = electromagnetic showers

Fake Photon BDT Features - all the beam background BDT features plus

Distance between the cluster and its nearest track

$E_{\rm extra}$ MVAs Summary

- + Improve $E_{\rm extra}$ for use as either selection cut or fitting variable
- · MVAs used by many analyses, e.g. $B \to K \nu \nu$, $R(D^*)$, $B \to \mu \nu$, $B \to \tau \nu$
- Methodology can be used for other detectors with crystal calorimeters with near-4 π coverage e.g. BES-III, KLOE

$B^0 ightarrow \ell au$ Future

- Nearing the pointy end of analysis finalising and checking fitting procedure + calculating systematics
- Upper limit measurement coming soon...

$E_{\rm extra}$ Clean-Up MVAs

Beam Background BDT Features

- Energy, timing and polar angle of the cluster
- Output of a separate MVA that characterises cluster shapes
- Output of a separate MVA that uses **pulse-shape information** from activated ECL crystals, where class 0 = hadronic showers and class 1 = electromagnetic showers

Fake Photon BDT Features - all the beam background BDT features plus

• Distance between the cluster and its nearest track

CLASSIFIER PERFORMANCE

The optimal hyperparameters were chosen using holdout with results below:

	# Trees	Max Depth	Shrinkage	Test AUC Score
Beam Background BDT	100	3	0.1	0.998
Fake Photon BDT	300	3	0.1	0.944

Output of beam background/fake photon BDT gives **probability of being class 1** i.e. the cluster originating from a signal photon

