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| will give a personal twist on the motivation.
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| will give a personal twist on the motivation

* Previous student from Lund University

* Home to the Lund string model
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Motivation — from the pp view

Let’s break down this plot in detail
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Motivation — from the pp view

Let’s break down this plot in detail

. X . : :
e Relative ?S yields, for increasing strangeness
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Motivation — from the pp view

Let’s break down this plot in detail

. X . : :
e Relative ?S yields, for increasing strangeness

e Strangeness is enhanced as a function of multiplicity
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Motivation — from the pp view

Let’s break down this plot in detail

. X . : :
e Relative ?S yields, for increasing strangeness

e Strangeness is enhanced as a function of multiplicity

* Effect grows with strangeness content
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Motivation — from the AA view

* Strangeness enhancement — one of the first
suggested QGP signatures

* qq -> sS is enhanced with temperature
* Faster than gg->qq

* More intuitive idea: Togp = Mg
* Enables thermal production of strange quarks

Phys. Lett. B728 (2014) 216-227 and Phys. Rev. Lett. 111
(2013) 222301
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Motivation — from the AA view

* Strangeness enhancement — one of the first
suggested QGP signatures

* gqq -> sS is enhanced with temperature
* Faster thangg->qq

* More intuitive idea: Togp = Mg
* Enables thermal production of strange quarks

* Enhancement was observed in AA relative to
Min. Bias (MB) pp data.

Phys. Lett. B728 (2014) 216-227 and Phys. Rev. Lett. 111
(2013) 222301
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Motivation — from the AA view

* Strangeness enhancement — one of the first
suggested QGP signatures

* gqq -> sS is enhanced with temperature
* Faster thangg->qq

* More intuitive idea: Togp = Mg
* Enables thermal production of strange quarks

* Enhancement was observed in AA relative to
Min. Bias (MB) pp data.

* However, the main enhancement is driven
in smaller (pp, pA) systems.
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Motivation — from the AA view

* What drives strangeness enhancement?

e |s it connected to the QGP?

e Can QGP created in high-mult
pp, or pA collisions?
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Motivation — from the AA view

* What drives strangeness enhancement?
* |s it connected to the QGP?

e Can QGP created in high-mult
pp, or pA collisions?

* Today | will try to explore:

« How homogenous are high-multiplicity pp collisions? 10~ :
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Motivation — from the AA view

* What drives strangeness enhancement?

e |s it connected to the QGP?

e Can QGP created in high-mult
pp, or pA collisions?

* Today | will try to explore:

« How homogenous are high-multiplicity pp collisions? 10~ :
e Can we delineate the effects between hard/soft physics? |
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Motivation — from the AA view

* What drives strangeness enhancement?

e |s it connected to the QGP?

e Can QGP created in high-mult
pp, or pA collisions?

* Today | will try to explore:

« How homogenous are high-multiplicity pp collisions? 10~ :
e Can we delineate the effects between hard/soft physics? |
* Can we gain information by contrasting event topologies?|
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Motivation — from the AA view

* What drives strangeness enhancement?
* |s it connected to the QGP?

e Can QGP created in high-mult
pp, or pA collisions?

* Today | will try to explore:

« How homogenous are high-multiplicity pp collisions? 10~ :
* Can we delineate the effects between hard/soft physics? |
* Can we gain information by contrasting event topologies?

| will try to bridge the connection between
the top and lower bulletins throughout this
talk!
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Motivation — from the AA view

* | will be contrasting results using 4
different MC event generators.

* “pure” QCD inspired models:
* PYTHIA Monash
* Herwig 7.2
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Outline

2. Transverse spherocity
2.1. Utilizing mid-rapidity multiplicity
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All plots taken from this thesis:
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793

26



Transverse spherocity

* |dea is to classify high-multiplicity events based on event topology

* We require top 1% multiplicity (Ntlﬂflgfts),

since this is where QGP-like effects arise



Transverse spherocity

* |dea is to classify high-multiplicity events based on event topology
* We require top 1% multiplicity (N|77|<0'8 ),

_ o . tracklets
since this is where QGP-like effects arise

* Jetty: Back-to-Back "jet-like" events

* Particle production mainly
driven by hard physics

* |sotropic: Azimuthally isotropic events

* Particle production driven by multiple
softer collisions
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Transverse spherocity

* |dea is to classify high-multiplicity events based on event topology

* We require top 1% multiplicity (Ntlyalfl?l'fts),
since this is where QGP-like effects arise oY

 Jetty: Back-to-Back "jet-like" events

* Particle production mainly
driven by hard physics

* |sotropic: Azimuthally isotropic events
* Particle production driven by multiple

pr=1
— —
0 SO 1
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Transverse spherocity

* |dea is to classify high-multiplicity events based on event topology
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Transverse spherouty dlstnbutlon

o n<0.8 S
* Spherocity distribution g% Niracktets (1), PP: (s 13TeV Nch>0
epe o 102 3
utilizing top-1% This Thesis -
midrapidity multiplicity
( |77|<08 ) 10
tracklets
* PYTHIA tunes perform well 10" | Data
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utilizing top-1%
midrapidity multiplicity
<0.8

tracklets

* PYTHIA tunes perform well

e EPOSLHC and Herwig 7.2
less so.

PYTHIA 8.2 Monash
= PYTHIA 8.2 Ropes

~4.--- Herwig 7.2
- EPOS-LHC

* For now, we will focus on
10% and 1% quantiles.




Transverse spherocity

: Inl<0.8
Wl"lleln using Ntracklets
n1<0.8 _ —
(Ntracklets_ CL1= NSPD)

in conjunction with
spherocity selection, we observe:

* lLarge shiftin < pp >
* Very small (=10%) shift in yield

Autocorrelation a feature, not a bug!

. Integrated quantities

(P, ) (GeVic)

* Normally, high-multiplicity midrapidity
measurements are biased towards jets

 However, in our case, we seem to
them in our jetty events!

capture
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis
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o b =
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis

| 5=13 TeV, Ngpp, (1), N[<0.8, N_>10
* Significant suppression of yields in Jetty > 1.1~ °
events T |
* Protonis largely unmodified g 1
* Approximately 20% effect for = r |
* Strength is ordered in strangeness = | oN, /N,
c 0.9¢ g +N, /N,
o | N=/ N_
o I =
*~ 0.8 This Thesis
O A N, 0.3 <p_<20GeVic
© - N,: 0.45 < p_<20 GeV/c
m : N,: O.4<pT<8GeVIC
07— PYTHIA8.2 Monash Nz: 0.6 < p_< 6.5 GeV/c
B D PYTHIA8.2 Ropes
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis

| 5=13 TeV, Ngpp, (1), N[<0.8, N_>10
* Significant suppression of yields in Jetty < 1
events T |

* Protonis largely unmodified g 1

* Approximately 20% effect for = r |

* Strength is ordered in strangeness = | oN, /N,

c 0.9¢ g +N, /N,
e MC predictions: o | N-/ N,

* PYTHIA Ropes predicts qualitative g 0.8 This Thesis
trend, but not correcting strangeness &= | N 0.4 3. <20 Gevic
Orderlng Y i Ny: 0.4 <p_<8GeVic

07— PYTHIA8.2 Monash Nz: 0.6 < p_< 6.5 GeV/c
B D PYTHIA8.2 Ropes
[ | | | | | 1 | | | 1 I | | | I | | |
0 0.2 0.4 0.6 0.8 ]
b

O



Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis

* Significant suppression of yields in Jetty
events
* Proton is largely unmodified
* Approximately 20% effect for =
e Strength is ordered in strangeness

- ON, /N,

-
N
T

—
|

* MC predictions:
* PYTHIA Ropes predicts qualitative
trend, but not correcting strangeness

! ’ This Thesis

N 0.3 < P, < 20 GeV/c

Ratio to pions / (HM ratio)

. 0.8 Np: 0.45 < p_< 20 GeV/c
ordermg i EPOSLHC Nj: 0.4 < p_<8GeV/c
* Same applies for EPOS L Herwig 7.2 RS A
* Herwig 7.2 and PYTHIA Monash are AR T SN B
0 0.2 0.4 0.6 0.8 1
unable to capture trends SpT=‘I



Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis

* Remember that the multiplicity
is constrained (=10%)
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Ratio of yields to (n*+1")
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis

* Remember that the multiplicity
is constrained (=10%)

* 20% effect requires 200-300% mult
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis

* Remember that the multiplicity
is constrained (=10%)

e 20% effect requires 200-300% mult

e HM events seem to be ~

O MRLAAREAMAARARARARML RRRRE RARRE
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis
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Transverse spherocity: Integrated Double Ratio

* Most impactful plot of this analysis
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Outline

2. Transverse spherocity

2.2. Broader multiplicity definitions

Adrian Nassirpour (SJU), HIM 2023-05

All plots taken from this thesis:
~ http://cds.cern.ch/record/2848
793
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Transverse spherocity: Stranger than fiction

* How does this compare to a VOM
multiplicity selection?
e Multiplicity selection at forward
rapidities
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Transverse spherocity: Stranger than fiction

* How does this compare to a VOM
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Transverse spherocity: Stranger than fiction

* How does this compare to a VOM
multiplicity selection?
e Multiplicity selection at forward

Now, the differential selection is instead:
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Transverse spherocity: VOM vs N
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Transverse spherouty VOI\/ vs N
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Transverse spherocity: VOM vs N

. . arinl<os
For extreme|y h|gh NtrackletS’

hard physics is captured
at [n] < 0.8

racklets

Soft Processes:

Hard Processes:
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Transverse spherocity: VOM vs N

. , In1<0.8
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Transverse spherocity: VOM vs N

. . arinl<os
For extreme|y h'gh NtrackletS’

hard physics is captured
at [n] < 0.8

racklets

However, the same idea has to
apply for VOM!

With increased VOM activity, you
bias jets toward forward
directions.
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apply for VOM!

With increased VOM activity, you
bias jets toward forward
directions.
* Hard physics at
midrapidity is diluted!
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Transverse spherocity: VOM vs N

: Inl<0.8
For extreme|y h'gh NtrackletS’

hard physics is captured
at [n] < 0.8

tracklets

However, the same idea has to
apply for VOM!

| This Thesis, pp, Vs = 13 TeV ]
i N, =10, P, >0.15 (GeV/c), |n| < 0.8

i ® CL1IHI O vomi @® CL1I

W Jetty[0-1]% [ Jetty[0-11% M Jetty [0-11%

T % Jetty[0-10]1% 3% Jetty[0-10]% ¥ Jetty [0-10]%
I~V lIsotropic [0-10]%\/ Isotropic [0-10]% ¥ Isotropic [0-10]% |
I~ A Isotropic[0-1]% /\ Isotropic [0-1]% A Isotropic [0-1]% ]

o
©

With increased VOM activity,
bias jets toward forward
directions.
* Hard physics at
midrapidity is diluted!

©
>
(())
o
; 0.8

Lt

590 15 20 25 30 35 40
(dN /dy )

Adrian Nassirpour (SJU), HIM 2023-05




Transverse spherocity: VOM vs N
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Transverse spherocity: VOM vs N
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For extreme|y h'gh NtrackletS’

hard physics is captured
at [n] < 0.8
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However, the same idea has to
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Transverse spherocity: VOM vs

Shown previously

|n|<0.8
Ntracklets

Tracklets (1) overlaps the VOM in yield.
However, midrapidity results showcase larger effect
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Outline

% . Conclusions
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Transverse spherocity: Conclusions

* How homogenous are high-multiplicity pp collisions?
» Topologies driven by soft physics well describe the average high-multiplicity event
> “Jetty” topologies seem to be clear outliers

e Can we delineate the effects between hard/soft physics?
> SgTzl can select different physics depending on the 1 region
> SgTzl can be used to select strangeness enhanced/suppressed events

* Can we gain information by contrasting event topologies?
» The effect is separated from dN/dn
» Hard, jet-like events seem to produce strange hadrons at a much lower rate than the average
high-multiplicity event



Transverse spherocity: Conclusions

* How homogenous are high-multiplicity pp collisions?
» Topologies driven by soft physics well describe the average high-multiplicity event
> “Jetty” topologies seem to be clear outliers

e Can we delineate the effects between hard/soft physics?
> SgTzl can select different physics depending on the 1 region
> SgTzl can be used to select strangeness enhanced/suppressed events

* Can we gain information by contrasting event topologies?
» The effect is separated from dN/dn
» Hard, jet-like events seem to produce strange hadrons at a much lower rate than the average
high-multiplicity event

* |t seems that strangeness enhancement is primarily a soft phenomenal
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Thank you for your time!

Adrian Nassirpour (SJU), HIM 2023-05

65



	Slide 1: Light flavor particle production with the respect to event topology with ALICE
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation – from the pp view 
	Slide 8: Motivation – from the pp view 
	Slide 9: Motivation – from the pp view 
	Slide 10: Motivation – from the pp view 
	Slide 11: Motivation – from the pp view 
	Slide 12: Motivation – from the pp view 
	Slide 13: Motivation – from the pp view 
	Slide 14: Motivation – from the pp view 
	Slide 15: Motivation – from the AA view
	Slide 16: Motivation – from the AA view
	Slide 17: Motivation – from the AA view
	Slide 18: Motivation – from the AA view
	Slide 19: Motivation – from the AA view
	Slide 20: Motivation – from the AA view
	Slide 21: Motivation – from the AA view
	Slide 22: Motivation – from the AA view
	Slide 23: Motivation – from the AA view
	Slide 24: Motivation – from the AA view
	Slide 25: Motivation – from the AA view
	Slide 26: Outline
	Slide 27: Transverse spherocity
	Slide 28: Transverse spherocity
	Slide 29: Transverse spherocity
	Slide 30: Transverse spherocity
	Slide 31: Transverse spherocity distribution
	Slide 32: Transverse spherocity distribution
	Slide 33: Transverse spherocity: Integrated quantities
	Slide 34: Transverse spherocity: Integrated Double Ratio
	Slide 35: Transverse spherocity: Integrated Double Ratio
	Slide 36: Transverse spherocity: Integrated Double Ratio
	Slide 37: Transverse spherocity: Integrated Double Ratio
	Slide 38: Transverse spherocity: Integrated Double Ratio
	Slide 39: Transverse spherocity: Integrated Double Ratio
	Slide 40: Transverse spherocity: Integrated Double Ratio
	Slide 41: Transverse spherocity: Integrated Double Ratio
	Slide 42: Transverse spherocity: Integrated Double Ratio
	Slide 43: Transverse spherocity: Integrated Double Ratio
	Slide 44: Outline
	Slide 45: Transverse spherocity: Stranger than fiction
	Slide 46: Transverse spherocity: Stranger than fiction
	Slide 47: Transverse spherocity: Stranger than fiction
	Slide 48: Transverse spherocity: Stranger than fiction
	Slide 49: Transverse spherocity: Stranger than fiction
	Slide 50: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 51: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 52: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 53: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 54: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 55: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 56: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 57: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 58: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 59: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 60: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 61: Transverse spherocity: V0M vs cap N sub tracklets to the open paren absolute value eta , end absolute value less than 0.8 close paren 
	Slide 62: Outline
	Slide 63: Transverse spherocity: Conclusions
	Slide 64: Transverse spherocity: Conclusions
	Slide 65

