Light flavor particle production with the respect to event topology with ALICE

> Adrian Nassirpour <u>afn@sejong.ac.kr</u>

HIM 2023 Yonsei University 26/05-2023

Outline

1. Motivation

- 2. Transverse spherocity
 - 2.1. Utilizing mid-rapidity multiplicity
 - 2.2. Broader multiplicity definitions

Outline

1. Motivation

2. Transverse spherocity

2.1. Utilizing mid-rapidity multiplicity2.2. Broader multiplicity definitions

I will give a personal twist on the motivation.

I will give a personal twist on the motivation

• Previous student from Lund University

LUNDS UNIVERSITET

I will give a personal twist on the motivation

- Previous student from Lund University
- Home to the Lund string model
 - Gets a lot of good PR

PYTHIA 8.3

I will give a personal twist on the motivation

- Previous student from Lund University
- Home to the Lund string model
 - Gets a lot of good PR
- ALICE strangeness enhancement results are published in 2016
 - PYTHIA 8 lines are incompatible with the data

I will give a personal twist on the motivation

- Previous student from Lund University
- Home to the Lund string model
 - Gets a lot of good PR
- ALICE strangeness enhancement results are published in 2016
 - PYTHIA 8 lines are incompatible with the data

Let's break down this plot in detail

Let's break down this plot in detail

• Relative $\frac{X_s}{\pi}$ yields, for increasing strangeness

10

Adrian Nassirpour (SJU), HIM 2023-05

Let's break down this plot in detail

• Relative $\frac{X_s}{\pi}$ yields, for increasing strangeness

Adrian Nassirpour (SJU), HIM 2023-05

Let's break down this plot in detail

- Relative $\frac{X_s}{\pi}$ yields, for increasing strangeness
- Strangeness is enhanced as a function of multiplicity

Let's break down this plot in detail

- Relative $\frac{X_s}{\pi}$ yields, for increasing strangeness
- Strangeness is enhanced as a function of multiplicity

13

Let's break down this plot in detail

- Relative $\frac{X_s}{\pi}$ yields, for increasing strangeness
- Strangeness is enhanced as a function of multiplicity
- Effect grows with strangeness content

- Strangeness enhancement one of the first suggested QGP signatures
 - $q\bar{q} \rightarrow s\bar{s}$ is enhanced with temperature
 - Faster than gg -> $q\overline{q}$
 - More intuitive idea: $T_{QGP} \approx M_s$
 - Enables thermal production of strange quarks

- Strangeness enhancement one of the first suggested QGP signatures
 - $q\bar{q} \rightarrow s\bar{s}$ is enhanced with temperature
 - Faster than gg -> $q\overline{q}$
 - More intuitive idea: $T_{QGP} \approx M_s$
 - Enables thermal production of strange quarks
- Enhancement was observed in AA relative to Min. Bias (MB) pp data.

 Phys. Lett. B728 (2014) 216–227 and Phys. Rev. Lett. 111

 (2013) 222301

 Adrian Nassirpour (SJU), HIM 2023-05

- Strangeness enhancement one of the first suggested QGP signatures
 - $q\bar{q} \rightarrow s\bar{s}$ is enhanced with temperature
 - Faster than gg -> $q\overline{q}$
 - More intuitive idea: $T_{QGP} \approx M_s$
 - Enables thermal production of strange quarks
- Enhancement was observed in AA relative to Min. Bias (MB) pp data.
 - However, the main enhancement is driven in smaller (pp, pA) systems.

- What drives strangeness enhancement?
 - Is it connected to the QGP?
 - Can QGP created in high-mult pp, or pA collisions?

18

- What drives strangeness enhancement?
 - Is it connected to the QGP?
 - Can QGP created in high-mult pp, or pA collisions?
- Today I will try to explore:
 - How homogenous are high-multiplicity pp collisions?

- What drives strangeness enhancement?
 - Is it connected to the QGP?
 - Can QGP created in high-mult pp, or pA collisions?
- Today I will try to explore:
 - How homogenous are high-multiplicity pp collisions?
 - Can we delineate the effects between hard/soft physics?

- What drives strangeness enhancement?
 - Is it connected to the QGP?
 - Can QGP created in high-mult pp, or pA collisions?
- Today I will try to explore:
 - How homogenous are high-multiplicity pp collisions?
 - Can we delineate the effects between hard/soft physics?
 - Can we gain information by contrasting event topologies?

- What drives strangeness enhancement?
 - Is it connected to the QGP?
 - Can QGP created in high-mult pp, or pA collisions?
- Today I will try to explore:
 - How homogenous are high-multiplicity pp collisions?
 - Can we delineate the effects between hard/soft physics?
 - Can we gain information by contrasting event topologies?

Adrian Nassirpour (SJU), HIM 2023-05

I will try to bridge the connection between the top and lower bulletins throughout this talk!

- I will be contrasting results using 4 different MC event generators.
 - "pure" QCD inspired models:
 - PYTHIA Monash
 - Herwig 7.2

23

- I will be contrasting results using 4 different MC event generators.
 - "pure" QCD inspired models:
 - PYTHIA Monash
 - Herwig 7.2
 - Semi-two component model
 - PYTHIA Ropes
 - Full, core-corona two component model
 - EPOS-LHC

VS

Low mult pp

corona core

24

- I will be contrasting results using 4 different MC event generators.
 - "pure" QCD inspired models:
 - PYTHIA Monash
 - Herwig 7.2
 - Semi-two component model
 - PYTHIA Ropes
 - Full, core-corona two component model

Macroscopic

Pictures from K. Werner

Outline

1. Motivation

2. Transverse spherocity

2.1. Utilizing mid-rapidity multiplicity

2.2. Broader multiplicity definitions

All plots taken from this thesis: http://cds.cern.ch/record/2848 793

- Idea is to classify high-multiplicity events based on event topology
 - We require top 1% multiplicity $(N_{\text{tracklets}}^{|\eta|<0.8})$, since this is where QGP-like effects arise

- Idea is to classify high-multiplicity events based on event topology
 - We require top 1% multiplicity $(N_{\text{tracklets}}^{|\eta|<0.8})$, since this is where QGP-like effects arise
 - Jetty: Back-to-Back "jet-like" events
 - Particle production mainly driven by hard physics
 - Isotropic: Azimuthally isotropic events
 - Particle production driven by multiple softer collisions

X

- Idea is to classify high-multiplicity events based on event topology
 - We require top 1% multiplicity $(N_{\text{tracklets}}^{|\eta|<0.8})$, since this is where QGP-like effects arise
 - Jetty: Back-to-Back "jet-like" events
 - Particle production mainly driven by hard physics
 - Isotropic: Azimuthally isotropic events
 - Particle production driven by multiple softer collisions

$$S_0^{p_T=1} = \frac{\pi^2}{4} \min_{\hat{n}} \left(\sum_{i} \frac{|\widehat{p_{\mathrm{T},i}} \times \hat{n}|}{N_{\mathrm{trk}}} \right)$$

X

- Idea is to classify high-multiplicity events based on event topology
 - We require top 1% multiplicity $(N_{\text{tracklets}}^{|\eta|<0.8})$ since this is where QGP-like effects arise
 - Jetty: Back-to-Back "jet-like" events
 - Particle production mainly driven by hard physics
 - Isotropic: Azimuthally isotropic events.
 - Particle production driven by multiple softer collisions

Transverse spherocity distribution

- Spherocity distribution utilizing top-1% midrapidity multiplicity $(N_{\text{tracklets}}^{|\eta|<0.8})$
- PYTHIA tunes perform well
 - EPOSLHC and Herwig 7.2 less so.

Transverse spherocity distribution

- Spherocity distribution utilizing top-1% midrapidity multiplicity $(N_{\text{tracklets}}^{|\eta|<0.8})$
- PYTHIA tunes perform well
 - EPOSLHC and Herwig 7.2 less so.
- For now, we will focus on 10% and 1% quantiles.

Transverse spherocity: Integrated quantities

- When using $N_{\text{tracklets}}^{|\eta|<0.8}$ $(N_{\text{tracklets}}^{|\eta|<0.8} = \text{CL1} = N_{\text{SPD}})$ in conjunction with spherocity selection, we observe:
 - Large shift in $< p_{\rm T} >$
 - Very small (\approx 10%) shift in yield
- Autocorrelation a feature, not a bug!
 - Normally, high-multiplicity midrapidity measurements are biased towards jets
 - However, in our case, we seem to capture them in our jetty events! Adrian Nassirpour (SJU), HIM 2023-05

Most impactful plot of this analysis

- Most impactful plot of this analysis
- Significant suppression of yields in Jetty events
 - Proton is largely unmodified
 - Approximately 20% effect for $\boldsymbol{\Xi}$
 - Strength is ordered in strangeness

- Most impactful plot of this analysis
- Significant suppression of yields in Jetty events
 - Proton is largely unmodified
 - Approximately 20% effect for $\boldsymbol{\Xi}$
 - Strength is ordered in strangeness
- MC predictions:
 - PYTHIA Ropes predicts qualitative trend, but not correcting strangeness ordering

- Most impactful plot of this analysis
- Significant suppression of yields in Jetty events
 - Proton is largely unmodified
 - Approximately 20% effect for Ξ
 - Strength is ordered in strangeness
- MC predictions:
 - PYTHIA Ropes predicts qualitative trend, but not correcting strangeness ordering
 - Same applies for EPOS
 - Herwig 7.2 and PYTHIA Monash are unable to capture trends

- Most impactful plot of this analysis
- \sqrt{s} =13 TeV, N_{SPD} (I), |η|<0.8, N_{ch}≥10 • Remember that the multiplicity (HM ratio) is constrained ($\approx 10\%$) ►N₌ / $\langle p_{\rm T} \rangle ({\rm GeV/c})$ 0.9 pions This Thesis, pp, √s = 13 Te∖ $N_{\rm ch} \ge 10, \, p_{_{\rm T}} \ge 0.15 \, ({\rm GeV}/c), \, |\eta| < 0.8$ ty [0-1]% ty [0-10]% 0.8 otropic [0-10]% Ratio to sotropic [0-1]% This Thesis $\pi^+ + \pi^ N_{\pi}: 0.3 < p_{T} < 20 \text{ GeV/c}$ 0.7 0.8 $N_p: 0.45 < p_{\tau} < 20 \text{ GeV/}c$ $N_{\Lambda}: 0.4 < p_{\tau} < 8 \text{ GeV/}c$ **EPOSLHC** $N_{\Xi}: 0.6 < p_{T} < 6.5 \text{ GeV}/c$ 0.6 ----- Herwig 7.2 0.2 0.4 0.6 0.8 U 25 30 35 40 5 15 20 $\langle dN_{\pi}/dy \rangle$

 \sqrt{s} =13 TeV, N_{SPD} (I), |η|<0.8, N_{ch}≥10

≜Ν_n

- Most impactful plot of this analysis
- Remember that the multiplicity is constrained ($\approx 10\%$)

- Most impactful plot of this analysis
- Remember that the multiplicity is constrained (≈10%)

(GeV/c)

 $p_{_{\mathrm{T}}}$

• 20% effect requires 200-300% mult

0.9

0.8

0.7

0.6

5

- HM events seem to be largely homogenous
 - Soft, "QCD-like" features seem to be the norm
 - Hard, jet-like features seem to be outliers

- Most impactful plot of this analysis
- Remember that the multiplicity is constrained ($\approx 10\%$)
 - 20% effect requires 200-300% mult
- HM events seem to be largely homogenous
 - Soft, "QCD-like" features seem to be the norm
 - Hard, jet-like features seem to be outliers

Strangeness enhancement seems to be feature of the UE/soft physics

- Most impactful plot of this analysis
- \sqrt{s} =13 TeV, N_{SPD} (I), |η|<0.8, N_{ch}≥10 • Remember that the multiplicity (HM ratio) ►N_n is constrained ($\approx 10\%$) • 20% effect requires 200-300% mult ◆ N₌ / N More Mult -> More Strangeness $2K_{s}^{0}$ pions Ratio of yields $\Lambda + \Lambda (\times 2)$ $\Xi^{-}+\Xi^{+}$ (×6) Ratio to This Thesis $N_{\pi}: 0.3 < p_{\perp} < 20 \text{ GeV/c}$ 10^{-2} $\Omega^{-}+\Omega^{+}$ (×16) 0.8 $N_p: 0.45 < p_{\tau} < 20 \text{ GeV/c}$ $N_{\Lambda}: 0.4 < p_{T} < 8 \text{ GeV/}c$ 13 TeV **EPOSLHC** $N_{\Xi}: 0.6 < p_{T} < 6.5 \text{ GeV/}c$ p-Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV ----- Herwig 7.2 Pb-Pb, \s_N = 2.76 Te Strangeness THIA8 + color ropes IERWIG7 PYTHIA8 Monash enhancement seems 0.8 0.2 0.4 0.6 0 10 to be feature of the 10^{2} 10 $\left< \mathrm{dN}_{\mathrm{ch}} / \mathrm{d\eta} \right>_{|\eta| < 0.5}$ UE/soft physics Adrian Nassirpour (SJU), HIM 2023-05

 \sqrt{s} =13 TeV, N_{SPD} (I), |η|<0.8, N_{ch}≥10

♦ N_n

- Most impactful plot of this analysis
- Remember that the multiplicity is constrained ($\approx 10\%$)

Outline

1. Motivation

2. Transverse spherocity

2.1. Utilizing mid-rapidity multiplicity

2.2. Broader multiplicity definitions

All plots taken from this thesis: http://cds.cern.ch/record/2848 793

- How does this compare to a VOM multiplicity selection?
 - Multiplicity selection at forward rapidities

Adrian Nassirpour (SJU), HIM 2023-05

45

- How does this compare to a VOM multiplicity selection?
 - Multiplicity selection at forward rapidities

- How does this compare to a VOM multiplicity selection?
 - Multiplicity selection at forward rapidities

- How does this compare to a VOM multiplicity selection?
 - Multiplicity selection at forward rapidities
- Now, the differential selection is instead:
 - Sensitive to large swings in yield (order of 2x effect)
 - Decreased sensitivity to $< p_{\rm T} >$

- How does this compare to a VOM multiplicity selection?
 - Multiplicity selection at forward rapidities
- Now, the differential selection is instead:
 - Sensitive to large swings in yield (order of 2x effect)
 - Decreased sensitivity to $< p_{\rm T} >$
- We can contrast this with broadened $N_{\text{tracklets}}^{|\eta|<0.8}$
 - Covering similar yields, but different in terms of hardness

Transverse spherocity: VOM vs $N_{\text{tracklets}}^{|\eta| < 0.8}$

- No strangeness enhancement observed when selecting multiplicity at forward rapidities
 - Why?

2.8< η <5.1 , -3.7< η <-1.7

Transverse spherocity: VOM vs $N_{\text{tracklets}}^{1/1 < 0.8}$

- No strangeness
 enhancement
 observed when
 selecting multiplicity
 at forward rapidities
 - Why?

2.8< η <5.1 , –3.7< η <–1.7

Transverse spherocity: VOM vs $N_{\text{tracklets'}}^{|\eta|<0.8}$ • For extremely high $N_{\text{tracklets'}}^{|\eta|<0.8}$

• For extremely high $N_{\text{tracklets'}}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$

Transverse spherocity: VOM vs $N_{\text{tracklets}}^{|\eta| < 0.8}$

• For extremely high $N_{\rm tracklets}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$

- For extremely high $N_{\rm tracklets}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$
- However, the same idea has to apply for VOM!
- With increased VOM activity, you bias jets toward forward directions.

- For extremely high $N_{\rm tracklets}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$
- However, the same idea has to apply for VOM!
- With increased VOM activity, you bias jets toward forward directions.

- For extremely high $N_{\rm tracklets}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$
- However, the same idea has to apply for VOM!
- With increased VOM activity, you bias jets toward forward directions.
 - Hard physics at midrapidity is diluted!

- For extremely high $N_{\rm tracklets}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$
- However, the same idea has to apply for VOM!
- With increased VOM activity, bias jets toward forward directions.
 - Hard physics at midrapidity is diluted!

Ratio of yields to $(\pi^+ \pi^-)$

Transverse spherocity: VOM vs $N_{tracklets}^{|/| < 0.0}$

- For extremely high $N_{\rm tracklets'}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$
- However, the same idea has to apply for VOM!
- With increased VOM activity, you bias jets toward forward directions.
 - Hard physics at midrapidity is diluted!
 - Low VOM: Hard/Soft $\approx 50\%$

Ratio of yields to (π^{++1}

- For extremely high $N_{\rm tracklets}^{|\eta|<0.8}$ hard physics is captured at $|\eta| < 0.8$
- However, the same idea has to apply for VOM!
- With increased VOM activity, you bias jets toward forward directions.
 - Hard physics at midrapidity is diluted!
 - Low VOM: Hard/Soft $\approx 50\%$
 - High V0M: Hard/Soft ≪ 50%

Transverse spherocity: VOM vs $N_{\text{tracklets}}^{|\eta| < 0.8}$ Tracklets (III) overlaps the VOM in yield. However, midrapidity results showcase larger effect

Outline

1. Motivation

2. Transverse spherocity

2.1. Utilizing mid-rapidity multiplicity

2.2. Broader multiplicity definitions

3. Conclusions

Transverse spherocity: Conclusions

- How homogenous are high-multiplicity pp collisions?
 - > Topologies driven by soft physics well describe the average high-multiplicity event
 - "Jetty" topologies seem to be clear outliers
- Can we delineate the effects between hard/soft physics?
 - \succ $S_0^{p_{\rm T}=1}$ can select different physics depending on the η region
 - $\succ S_0^{p_T=1}$ can be used to select strangeness enhanced/suppressed events
- Can we gain information by contrasting event topologies?
 - > The effect is separated from $dN/d\eta$
 - Hard, jet-like events seem to produce strange hadrons at a much lower rate than the average high-multiplicity event

Transverse spherocity: Conclusions

- How homogenous are high-multiplicity pp collisions?
 - > Topologies driven by soft physics well describe the average high-multiplicity event
 - "Jetty" topologies seem to be clear outliers
- Can we delineate the effects between hard/soft physics?
 - \succ $S_0^{p_{\rm T}=1}$ can select different physics depending on the η region
 - $\succ S_0^{p_T=1}$ can be used to select strangeness enhanced/suppressed events
- Can we gain information by contrasting event topologies?
 - > The effect is separated from $dN/d\eta$
 - Hard, jet-like events seem to produce strange hadrons at a much lower rate than the average high-multiplicity event
- It seems that strangeness enhancement is primarily a soft phenomena!

Thank you for your time!

