IRIS-HEP retreat

Current plans for AGC (30')

Alexander Held (University of Wisconsin–Madison) Oksana Shadura (University Nebraska–Lincoln)

IRIS-HEP Institute Retreat 2023, Sep 11–13 2023, https://indico.cern.ch/event/1288444/

This work was supported by the U.S. National Science Foundation (NSF) Cooperative Agreement OAC-1836650 (IRIS-HEP).

Introduction

- We will summarize the AGC plans laid out in the strategic plan
- Our views of the best way forward for the AGC project have evolved in parts • will outline those here to move towards an updated plan
- - discussion session at 13:30 today

• important: focus on realistic high-impact goals given available personpower

Challenges motivating the project

Scaling & turnaround

- Scaling to HL-LHC data volumes with available computing resources
 - Need for new methods for efficient data scaling, caching at AFs to handle more data-intensive analysis pipeline => DOMA, SSL

- Analysis turnaround time
 - Reaching interactive analysis turnaround times requires efficient analysis facility (AF) usage => SSL, AS, DOMA, user

UX & sustainability

- User experience (UX) for complex analyses: increase scientific reach of result => AS • User improvement experiences allow physicists to focus on the physics

 - Need expanded Machine Learning (ML) tooling with good user experience + performance Leverage ML technology to automatically optimize analysis sensitivity

• Sustainability => ?

- Limited person power to develop & maintain full stack -> rely on industry solutions & external developments (e.g. tokens)
- Limited of analysis reproducibility & reusability
- Need for central gathering point for community to discuss & develop analysis approaches

Work plan from strategic report

Strategic report plan

- ATLAS-/CMS-specific analyses were meant to help bridge the gap to production • e.g. nanoAOD & PHYSLITE formats, systematic uncertainty handling • different focus per experiment: on-the-fly systematics in ATLAS, ServiceX & column joining in CMS
- Designing new analyses is a significant amount of effort that requires experienced physicist personpower
- IRIS-HEP members participating and interfacing -> do not develop additional analyses within AGC

 - some relevant details are too specific for a broader inter-experimental forum like AGC • instead: maximize impact by focusing on dedicated areas

Proposed: expand AGC with new flagship analyses (high complexity, high volume)

• We believe that the relevant R&D can efficiently happen within the experiments, with

What we already have right now

• We have:

- Open Data-based analysis of modest complexity capturing all generic workflow aspects
- Setup with a lot of configuration options to emulate different types of analyses (including different processing pipelines)
- Many combinations of configuration settings need to be benchmarked & understood

analysis-grand-challenge / analyses / cms-open-data-ttbar / utils / config.py

alexander-held feat: move xcache prefix setting to config (#191)		
Code	Blame	198 lines (197 loc) · 6.73 KB
1	✓ config	J = {
2	"g	lobal": {
3		<pre># ServiceX: ignore cache with repeated queries</pre>
4		"SERVICEX_IGNORE_CACHE": False,
5		<pre># analysis facility: set to "coffea_casa" for coffea-casa environments, "EAF"</pre>
6		"AF": "coffea_casa",
7		# number of bins for standard histograms in processor
8		"NUM_BINS": 25,
9		# lower end of standard histograms in processor
10		"BIN_LOW": 50,
11		# upper end of standard histograms in processor
12		"BIN_HIGH": 550,
13		
14	},	
15	"b	penchmarking": {
16		# chunk size to use
17		"CHUNKSIZE": 200000,
18		<pre># read files from public EOS (thanks to the CMS DPOA team!)</pre>
19		<pre># note that they are likely only available temporarily</pre>
20		# and not part of an official CMS Open Data release
21		"INPUT_FROM_EOS": False,
22		<pre># prefix for URIs for ATLAS-style xcache use</pre>
23		<pre># e.g. "root://xcache.af.uchicago.edu//" for UChicago</pre>
24		"XCACHE_ATLAS_PREFIX": None,
25		### metadata to propagate through to metrics ###
26		# "ssl-dev" allows for the switch to local data on /data
27		"AF_NAME": "coffea_casa",

Proposed evolution and new focus of AGC

Focus areas: exploiting AGC setup (1)

• **Benchmarking with existing setup** (as already mentioned in strategic plan)

- we can use the AGC setup as a tool to study facility, library and implementation performance (line profiling, comparing measurements to hardware, ...)
- facility improvements (including ML/MLops), important: stability of distributed execution
- collaborating with DGC

• Deliverables

- performance reports at internal meetings, workshops, conferences
- evolve existing AGC task as needed to capture new functionality
 - estimated 1–2 years of UX & facility improvement work possible from lessons learnt with AGC

Focus areas: exploiting AGC setup (2)

- plan)
 - close collaboration with REANA team
 - demonstrate preserved AGC analysis
- Deliverables: AGC running in REANA, reinterpretation example (?)

• Analysis preservation and reinterpretation (as already mentioned in strategic

• propose plan for relevant services: do we assume those still exist? package them up too?

Focus areas: autodiff

- strategic plan)
 - completely new standalone analysis example
 - connects many projects & people: AGC ideal home for this type of effort
- Deliverable: demonstrator project showcased in public meeting

Gradient-based analysis optimization demonstrator (as already mentioned in

Focus areas: support & interfacing

- Support for experiment-internal demonstrator projects
 - interface, forum to discuss inter-experimental aspects
 - column joining workflow

• Community engagement / reaching new audiences

- bridge gaps to new user groups in experiments
- Deliverable: ?

An idea of a timeline

• Year 1

- 25% faster analysis via improvements following benchmarking, stable execution at scale
- Year 2
 - partially complete fully differentiable analysis example
- Year 3
 - ?
- Year 4
 - showcase substantially complete fully differentiable analysis example • 1h turnaround time for analysis at HL-LHC scale (lots of variables to be

• Year 5

determined here...)

Overall view on AGC timeline

ATLAS and CMS Coffea-casa facilities are ready to be used in production

Execute CMS AGC analysis with column extraction feature

Metrics and targets

- Number of deployed analysis facilities in production operation: [at least 2]
- Number of AS components fully supporting distributed analysis: [at least 5]
- **Fraction of components fully preserved in AGC pipeline:** [100%]
- Fraction of benchmark analysis at HL-LHC scale executed in 1 hour: [20% / 50% / 100%]
 - Compare efficiency through time & data rate metric
- Number of AS tools that support integration with automatic optimization: [at least 3]
 - and critical tool for HL-LHC analysis

Tracks progress towards fully-differentiable analyses, which the institute believes is a powerful

Timeline: year 1

DOMA	ATLAS and CMS Coffea-casa facilities are ready to be used in production	Year 1
SSL / DOMA	ServiceX deployed inside Fabric at CERN	Year 1
AS	All components of AS pipeline are fully supporting distributed analysis	Year 1
AS	Define analysis tasks for the top quark mass and di-Higgs measurement, create implementations	Year 1
AS	New version of AGC analysis with incorporated ML techniques	Year 1

Setting up facilities, services, and analysis task for the next generation of the AGC

Timeline: year 2

Checkpoint for performance and throughput & functionality demonstration

AS	Benchmark analysis on dataset 20% HL-LHC scale to be completed in 1 hour	Year 2
DOMA	Demonstrate analysis running at 200 Gbps as a part of AGC	Year 2
AS	Demonstration of running full analysis able to use statistical models defined in unified HS3 serialization format	Year 2
AS	All core components of Analysis System pipeline support integration of differentiable operations and passing of gradients	Year 2
AS	Demonstrate AOD extraction prototype	Year 2

Timeline: years 3–5

- New **functionality**: column joining, reinterpretation, differentiable analysis
- **Scaling** to full HL-LHC requirements

AS	Demonstrate AOD extraction with column joining workflow	Year 3
DOMA	Demonstration of an AGC analysis used in reinterpretation platform	Year 3

AS	Demonstrate fully differentiable analysis	Year 4
----	---	--------

DOMA	Benchmark analysis on dataset 100% HL-HL scale completed in 1 hour	Year 5
------	--	--------

Primary risks for AGC

Analyzers not adopting proposed workflows

- *Impact:* Activity not useful to community ${ \bullet }$
- *Probability:* Low to Medium
- *Mitigation:* Deep investment in community engagement

Facility evolution diverging from patterns used in AGC implementations

- *Impact:* Need to adopt technologies
- Probability: Low ${}^{\bullet}$
- *Mitigation:* Invest in partnership with AFs and plan for technology nimbleness

Unable to achieve **intended throughput rates**

- *Impact:* Slow analysis turnaround time for analyzers
- *Probability:* Low to Medium
- *Mitigation:* Give guidance on patterns and workflows to avoid

Unable to put together a substantially complete differentiable pipeline

- *Impact:* Cannot study and benefit from gradient-based optimization, physics reach limited
- *Probability:* Low to Medium
- *Mitigation:* Rigorous integration testing between all components

