
Derek Weitzel
Diego Davila

XRootD Transfer
Accounting

Previous Work Summary
● We completed 2 validations, a correctness and scale

● We found a few minor issues, which we corrected

● Found a large problem with the transport mechanism between the XRootD
servers and our accounting collector

○ Solved by writing a simple shoveler that reliably transports monitoring/accounting packets
between the XRootD server and our accounting pipeline

2

Previous vs. Now

3

OLD NEW

Decisions - Tokens?
● A sticky point for shoveler installation has been tokens. It is one additional

step for admins above adding the shoveler.
● Should we stick with the auto refreshing tokens?

○ Tokens are mostly to protect the infrastructure rather than authenticate the data

4

Decisions - Data Visibility
● We have data such as:

○ Per transfer statistics such as connected client, authentication information, file opened.
○ Cache stats such as per file hit and miss rate

● We are capturing this data, but we don’t have a dashboard for users
○ Resource Providers want to know how their caches are being used. What is the hit rate?

What datasets are being used in the cache?
○ Users “may” want to know if the cache is a bottleneck.

● We have the data, now we need to show it!
● ATLAS and the OSDF has some good cache/hit dashboards we could build

from.

5

Updates
● Authentication information for token transfers are missing in the data

○ Working with the XRootD team to get appropriate authentication data into the exported data.

● We have two sources for TPC records, from Rucio / FTS, and from XRootD
monitoring streams

○ Do we care about both? Should we stop using the XRootD streams? The Rucio/FTS
monitoring will have more info like requester…

● Monitoring packet loss:
○ One of the observations from a validation is packet loss is a significant issue when you don’t

use a nearby shoveler.
○ Need to advise on buffer max size < MTU + headers

6

Acknowledgments
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2030508 (PATh) and OAC-1836650 (IRIS-HEP). Any opinions,
findings, conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

7

Backup Slides

8

Motivation
● The XCache supports the data needs of

organizations and individual users
● Caches and origins are spread

throughout the world (see right →)
● Monitoring cache usage is imperative:

○ Working set size
○ Cache thrashing
○ Utilization

9
https://osdf.osg-htc.org

Validations
We conducted 2 validations of the existing OSDF/XRootD monitoring to find and
correct any issues.

● Correctness Validation: Aug 12, 2020
○ Is every transfer captured correctly

● Scale Validation: Apr 14, 2021
○ Does our monitoring scale to the expected size of the OSDF in the future.

10

https://zenodo.org/record/3981359#.YjD6phDMJf0
https://zenodo.org/record/4688624#.YjD6thDMJf0

Why XRootD Detailed Monitoring is Hard - Format
● Collector has to keep a lot of state
● Potential for packet loss means

we have to place TTL on state
● Time between client connect and

file close can be hours
● Must “join” different messages,

but may lose packets
● For example, if you get a file close

without the corresponding file
open, then no idea what file was
read.

11

Observations from validation v1
● Small bugs in Collector
● Incorrect assumption: Sequence numbers in monitoring packets are not a

reliable measure of missed packets (since fixed)
● UDP fragmentation caused significant loss

Report: https://doi.org/10.5281/zenodo.3981359

12

UDP Fragmentation
● UDP Fragmentation is a known problem:

https://blog.cloudflare.com/ip-fragmentation-is-broken/
● The very Zoom meeting you are on uses UDP packets:

13

https://blog.cloudflare.com/ip-fragmentation-is-broken/

Tests performed in validation 2
In the second version of our validation we wanted to find out:

1. If sending monitoring data simultaneously from multiple XRootD servers
would show any kind of data loss.

2. What is the maximum rate at which our collector can process monitoring
records.

14

Monitoring data from multiple XRootD servers
On each test a client will request ‘N’ number of random files to each of the ‘M’ servers, then wait for a second and repeat until a total
amount of ‘O’ files is reached where:

N - Req. rate
M - Num. Servers
O - Total files req.

Num.
Servers

Files
req. per
server

Total
files
req.

Req.
rate

Files
recorded

avg.
Success

%
2 100 200 20/s 200.00 100.00%

4 100 400 20/s 400.00 100.00%

8 100 800 20/s 800.00 100.00%

32 100 3,200 20/s 3196.67 99.90%

50 100 5,000 20/s 5000.00 100.00%

50 200 10,000 50/s 10000.00 100.00%

50 400 20,000 80/s 19992.33 99.96%

50 800 40,000 100/s 39991.00 99.98%

After each test. we will pull the recorded data from
rabbitMQ and compare with what we requested.

With this experiment we concluded that data loss due to
scale is negligible

15

Summary of major issues
● Fragmentation causes loss of packets leading to missing data

● When scaling the number of nodes and the number of packets, packet loss
occurs.

16

Solution - XRootD Monitoring Shoveler
● Designed and develop a “shoveler” from the UDP format to a resilient format

(Message Bus)

● The shoveler is simple, does no parsing or aggregation of records:

Shoveler Operation

1. Receives Packets
2. Very simple validation
3. Packages the data packet (base64’s the data, puts in json with other

metadata)
4. Reliably sends to message bus

17

XRootD Monitoring - 2 components
● Shoveler (simple):

○ Runs at Sites
○ Collects the monitoring UDP packets from XRootD
○ “Packages” the UDP messages and sends them to a reliable message bus

● Collector (complicated):
○ Runs Centrally
○ Parses monitoring messages
○ Keeps state
○ Processes packets to extract VO, application info, type of transfer

18

Design Decisions
● The shoveler is purposefully “simple”
● The collector performs all stateful logic

● When shoveler is disconnected from message bus, it will write messages to
disk and replay them when reconnected.

○ A production shoveler will write ~30MB of data a day to disk if disconnected.

19

Shoveler
Available at
https://github.com/opensciencegrid/xrootd-monitoring-shoveler/releases

Will be available in OSG’s repos soon (currently in OSG testing)

Can be deployed as a static binary, RPM, docker image, or in kubernetes.

20

https://github.com/opensciencegrid/xrootd-monitoring-shoveler/releases

Deployment plan
● The shoveler has been deployed at several sites.

● Next, we will deploy the shoveler as a “side-car” with the distributed caches of
OSDF

● Shoveler will become part of the XrootD deployment

21

