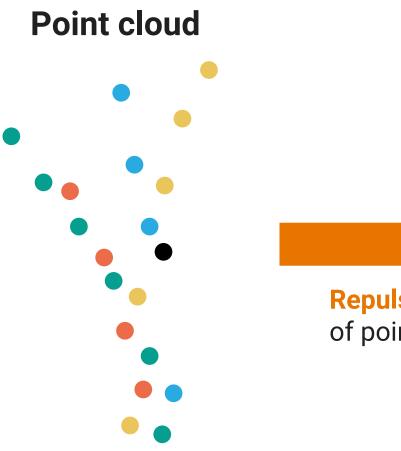
Object Condensation Tracking



Gage DeZoort¹

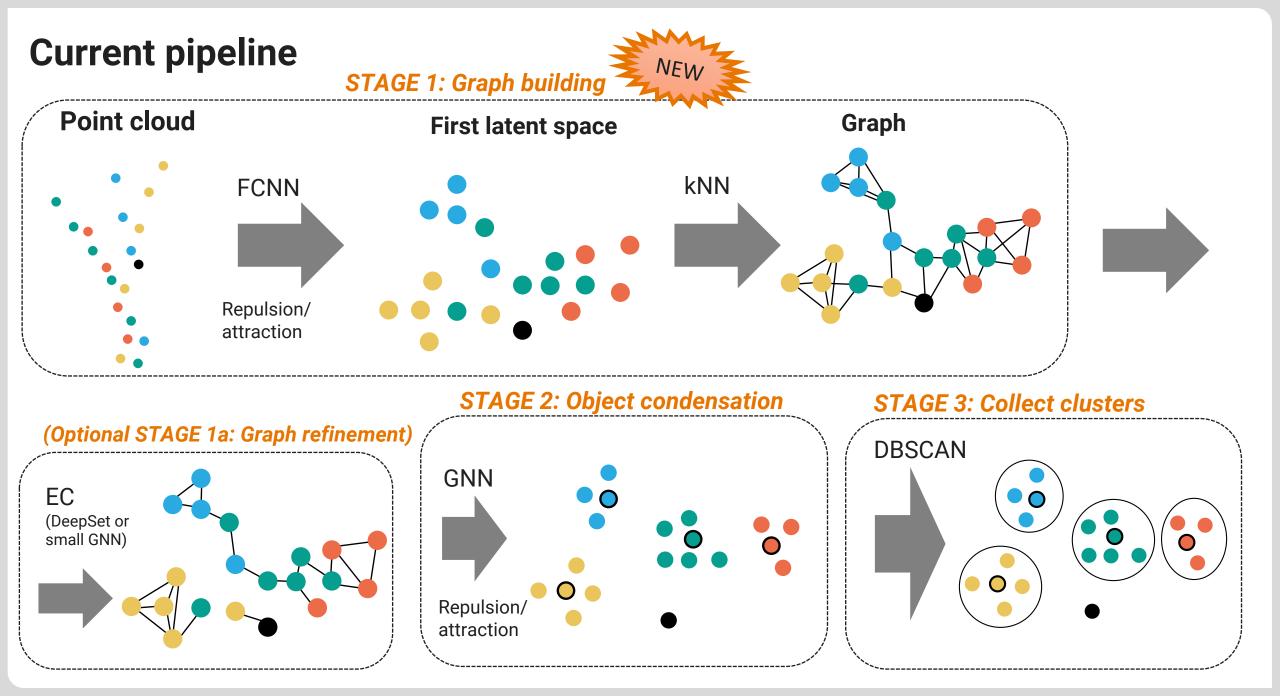
¹Princeton University, ²IRIS-HEP

Vision: One-shot tracking

Learnt latent space

Hits already clustered by particle; Clusters can be collected trivially

 $p_{T} = 0.9$


p_⊤=1.1

Repulsion & attraction of points in latent space

Condensation point

p_T=1.0

Represents the track, can learn track parameters like pT (WIP)

People Core team

Kilian Lieret (Princeton) Current development & training

Gage DeZoort (Princeton) Ideas, GNN know-how, original codebase

Transformer exploration

CS focused; Tracking as application/benchmarking

Siqi Miao

(Georgia Tech)

Pan Li (Georgia Tech) Actively looking for more collaborators, especially additional core team members (e.g., Ph.D. student)

CMS LST Liaison Application to CMS data, possibly combined with early LST stages

Jonathan Guiang (UCSD) Philip Chang (Florida)

Summer fellows

(Delhi Tech U)

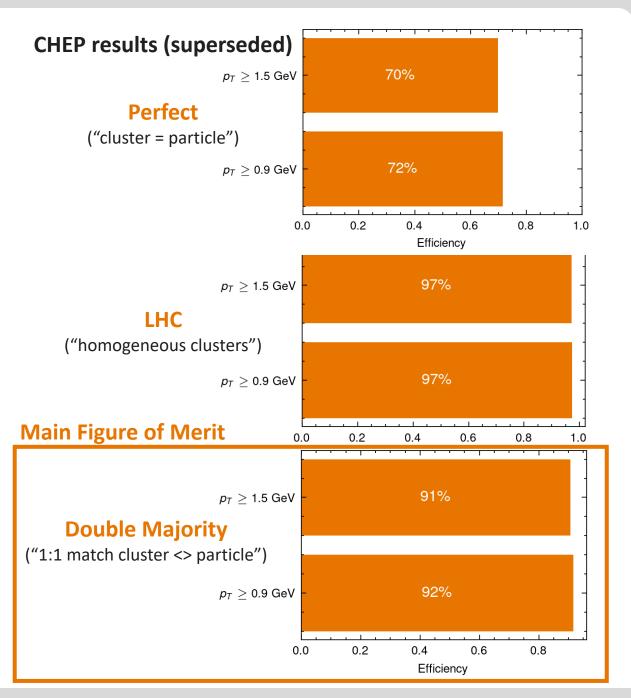
Refilwe Bua (Brown)

Feedback & intellectual support

(Columbia)

Object Condensation Tracking | Kilian Lieret, Gage deZoort

Status


- So far running on trackML dataset pixel layers
- Results presented at CHEP:
 - First results without truth cuts
 - OC results seem to match/outperform comparable EC GNN pipeline trained on same data when using connected components for evaluation

• Significantly improved pipeline since CHEP:

- Using embedding + kNN for graph construction
- Performance improved while reducing memory consumption

• In progress:

- CHEP proceedings
- Paper with results of new pipeline

Plans

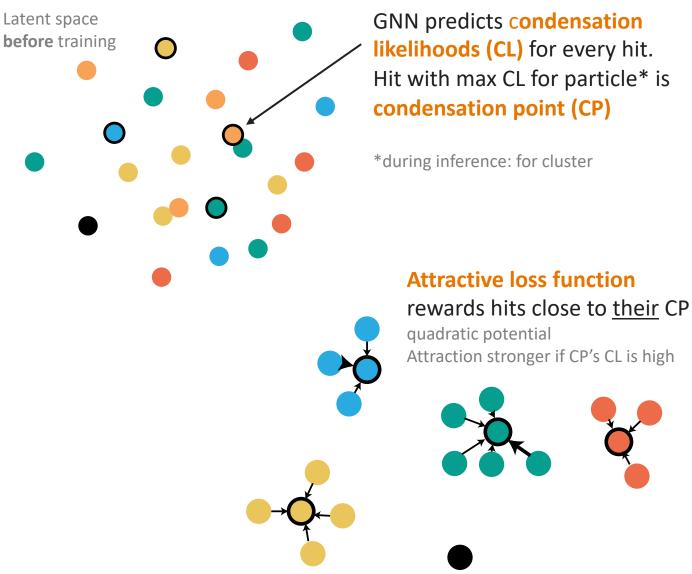
Core team is only ~1 FTE

- enough to sustain exploration and R&D
- unlikely to bring this towards production fast (ExaTrkx has many times our resources and is only convering there)
- 2023 Milestones:
 - Publishing current research

• 2023 Forks in the road

- Does our approach match/outperform ExaTrkx's EC-based model on the full detector?
- Can we apply OC tracking to MDs from LST project? Do we see significantly better features in CMS data?
- Will **local transformers** be competitive in our approach?
- Does it make sense to merge frameworks with ExaTrkx?

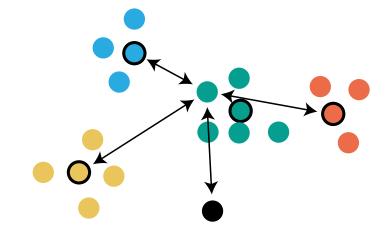
- 2024 Milestones:
 - Adding track parameter prediction
 - Training on CMS data and getting first benchmarks/results
 - First performance tests for speed
- 2025 Milestones:
 - **Performance optimization** with specific accelerators
 - **CMSSW** integration
 - Physics studies with CMS data
- End of project (3-5y):
 - OC Tracking is used/tested in **production**


Thanks!

Find us on github! https://github.com/gnn-tracking

gnn_tracking Public		☆ Edit Pins ▼ ③ Unwatch 5 ▼	% Fork 10 ▼ † Starred 19
😤 main 🗸 😯 5 branches 🛇 6 tags		Charged particle tracking with graph neural networks	
pre-commit-ci[bot] [pre-com	mit.ci] pre-commit autoupdate (#424) 🗸 7	79e943c last week 🕚 1,153 commits	♂ gnn-tracking.rtfd.io/
.github	Add ExpandWandbConfig callback	2 months ago	tracking ai clustering mI her
docs	Add links to source code in sphinx	2 months ago	hep-ex tracking-algorithm trackml gnn gnn-model
environments	Use pyg implementation of edge_subgraph (#401) last month	述 MIT license 다 Cite this repository ~
readme_assets	Add banner image	last year	
src/gnn_tracking	[pre-commit.ci] pre-commit autoupdate (#424)	last week	-∿- Activity
tests	Fix test and test ECCut	last week	☆ 19 stars
lall-contributorsrc	Add Jian as contributor	4 months ago	 S watching 10 forks v23.09.0 Latest 2 weeks ago
🗋 .flake8	Ignore studies submodule for flake8	last year	
🗅 .gitignore	[Lightning WIP] Training loop working	3 months ago	
🗅 .pre-commit-config.yaml	[pre-commit.ci] pre-commit autoupdate (#424)	last week	
🗅 .readthedocs.yaml	Add RTD config file (#149)	last year	Contributors 7
CHANGELOG.md	Release 23.09.0	2 weeks ago	
CITATION.cff	Fix citation file format	last month	
LICENSE.txt	Add packaging configuration	last year	
	Markdown link fix	last month	• Python 99.0% • Shell 1.0%

Object Condensation Tracking | Kilian Lieret, Gage deZoort


Object condensation: Training losses

Repulsive loss function

penalizes hits close to other CP

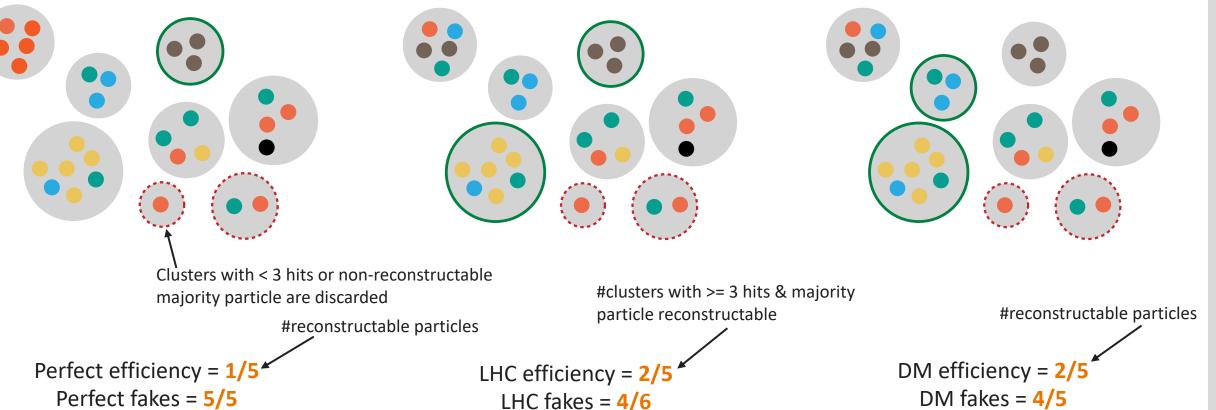
hinge loss: no more repulsion after certain distance repulsion stronger for strong CP CLs

Background loss function noise hits should have low CL

Loss functions implemented from Kieseler 2020 (2002.03605)

Latent space

Metrics


Perfect

Cluster contains only hits from one particle and no hits outside of cluster

LHC Cluster contains >= 75% hits from one particle

Double Majority

Cluster contains >= 50% hits from one particle and This particle has < 50% of its hits outside

We also evaluate these **metrics at pT thresholds**: pT cut is applied to majority particle of cluster or particle (this is <u>not</u> a truth cut on the data, but simply a efficiency vs pT study)

Reconstructable: >= 3 hits