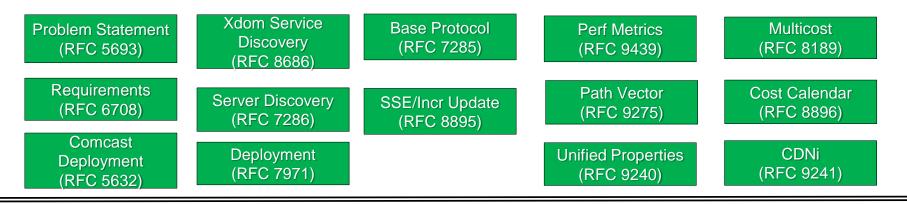
ALTO Integration in Rucio Summer 2023 Work Plan


June 29, 2023

Context

- Relatively new to Rucio/FTS/LHCONE, but found them to be fascinating designs
- Initial focus is on integrating infrastructure visibility capability (i.e., ALTO) into Rucio/FTS, using existing Rucio transfer/FTS scheduling algorithms
 - Focus on both application of Internet standards and also extensions to ALTO driven by real issues revealed by Rucio/FTS application
- Then evaluate, model and optimize existing algorithms
 - Compare w/ existing algorithms with approaches taken by other systems with similar problems
 - Focus on global modeling and optimization

Background: Application-Layer Traffic Optimization (ALTO)

- Defines an Internet standard for networks to expose its state to applications to optimize both network and application performance
- Defined by the Transport Area of Internet Engineering Task Force (IETF)
- Two core components:
 - Abstractions of network state/services
 - Transport and discovery of abstractions

ALTO Abstraction Example: Endpoint Cost Service (ECS)

```
11.5.1.7. Example
POST /endpointcost/lookup HTTP/1.1
Host: alto.example.com
Content-Length: 248
Content-Type: application/alto-endpointcostparams+json
Accept: application/alto-endpointcost+json,application/alto-error+json
{
    "cost-type": {"cost-mode" : "ordinal",
    "cost-metric" : "routingcost"},
    "endpoints" : {
    "srcs": [ "ipv4:192.0.2.2" ],
    "dsts": [
    "ipv4:192.0.2.89",
    "ipv4:198.51.100.34",
    "ipv4:203.0.113.45"
    ]
    }
}
```

```
HTTP/1.1 200 OK
Content-Length: 274
Content-Type: application/alto-endpointcost+json
{
    "meta" : {
        "cost-type": {"cost-mode" : "ordinal",
            "cost-metric" : "routingcost"
     }
    },
    "endpoint-cost-map" : {
        "ipv4:192.0.2.2": {
            "ipv4:192.0.2.89" : 1,
            "ipv4:198.51.100.34" : 2,
            "ipv4:203.0.113.45" : 3
     }
    }
}
```

More details see [RFC 7285].

ALTO Cost Services and Rucio Distance

- Excellent match between Rucio distance and ALTO costs
 - ALTO endpoint cost service (ECS) and Cost Map service provide the distances between any source/destination pairs, for a set of performance metrics

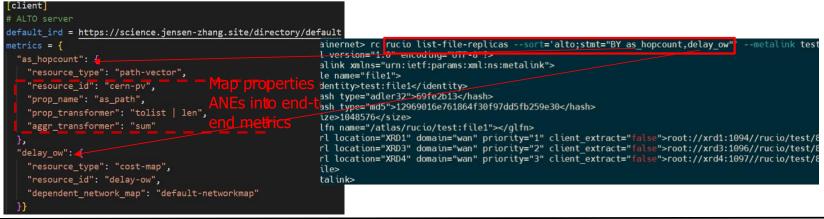
Core - Core API - DOMA - DOMA API -	Docs - Admin - Logs - O Help - Logs -	 C Request p
% 🖸 Export 🔒 @ Filter 📿 Reload ▾ Columns ③	Show 100 + entries	
Source It	Destination	Ranking
CNAF-STORM-ES	DESY-DCACHE	1
CNAF-STORM-ES	EULAKE-1	1
CNAF-STORM-ES	EULAKE-2	1
CNAF-STORM-ES	IN2P3-CC-DCACHE	1
CNAF-STORM-ES	SARA-DCACHE	1
CNAE-STORM-ES	PIC-DCACHE	1

rucio-admin rse add-distance --distance 5 RSE1 RSE2 rucio-admin rse add-distance --distance 5 RSE2 RSE1

Src:

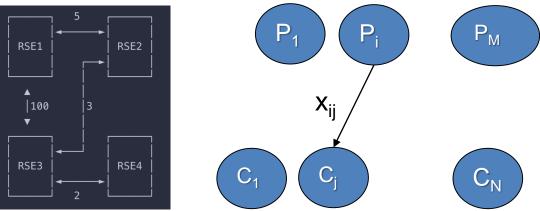
https://indico.cern.ch/event/867913/contributions/3769387/attachments/2001400/3 341196/CRIC_-_Rucio_Workshop_5.pdf

+	Definition in this doc	++ Semantics Based On
One-way Delay	Section 4.1	Base: [RFC7471,8570,8571] sum Unidirectional Delay
Round-trip Delay	Section 4.2	Base: Sum of two directions from above
Delay Variation 	Section 4.3	Base: [RFC7471,8570,8571] sum of Unidirectional Delay Variation
Loss Rate	Section 4.4	Base: [RFC7471,8570,8571] aqqr Unidirectional Link Loss
Residual Bandwidth	Section 5.2	Base: [RFC7471,8570,8571] min Unidirectional Residual BW
Available Bandwidth 	Section 5.3	Base: [RFC7471,8570,8571] min Unidirectional Avail. BW
TCP Throughput	Section 5.1	[I-D.ietf-tcpm-rfc8312bis]
Hop Count	Section 4.5	[RFC7285]


Table 1. Cost Metrics Defined in this Document.

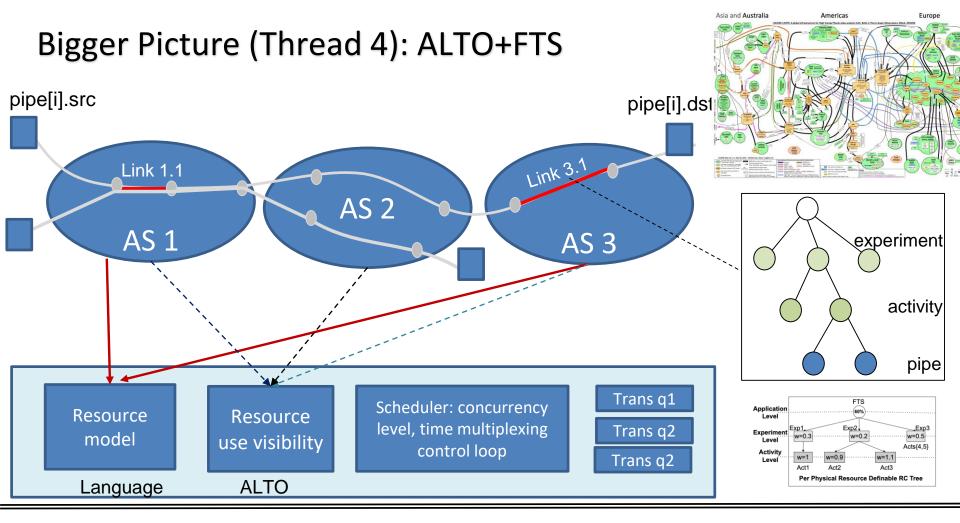
Src: https://datatracker.ietf.org/doc/draft-ietf-alto-performance-metrics/28/

- Benefits of ALTO based: automated, dynamic, according to network state


Thread 1: Rucio + ALTO Integration

- Three components to be added
 - T1.1 Develop and deploy ALTO servers obtaining infrastructure visibility
 - T1.2 Declare visibility to Rucio deployment by operator
 - T1.3 Introduce unified distance expression (UDE) in Rucio API to allow user specifying sorting expression using a combination of distances and other properties (Kai, Jensen, Lauren)

Thread 2: Rucio Transfer Algorithms Modeler and Optimizer


- Formalization and Optimization of Rucio Transfer Algorithms, e.g.,
 - The algorithm framework of Rucio source selection for a downloader [1] is defined by ordering vector <source pri, path cost>
 - More direct control is to compute $\{x_{ij}\}$, which is the amount of load assigned to be sent using path P_i to client cluster C_j
 - Task: Transfer Modeler and Optimizer compute {x_{ij}} and find config resulting in better {x_{ii}}

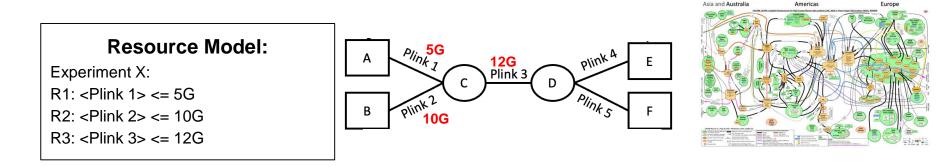
[1] https://rucio.cern.ch/documentation/operator/transfers/transfers-preparer/

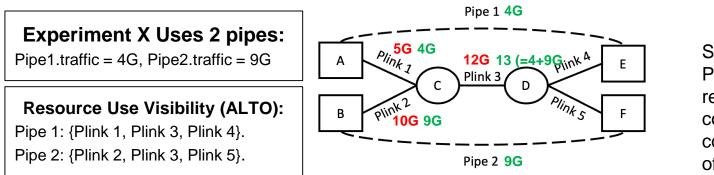
Thread 3: Rucio Transfer Algorithms in Context

- Comparison: source selection ~ load balancer (LB) for server selection; traffic engineering (TE) in networking; Content multihoming in cloud cost optimization LB:
 - Local LB, e.g., nginx alg such as round robin, load (example see <u>http://nginx.org/en/docs/http/load_balancing.html</u>), and more complex such as consistent hash, virtual servers, Maglev
 - Global LB (GLB), e.g., Akamai, Netflix
 - Internet TE: ECMP, fast rerouting, ...
- Main task: comparison of Rucio design and other designs and discussions on implications

Backup Slides

ALTO Abstraction Example: Path Vector


--example-2


```
POST /endpointcost/pv HTTP/1.1
                                                                                                                         Content-ID: <propmap@alto.example.com>
                                                             Content-Length: 1433
                                                                                                                         Content-Type: application/alto-propmap+json
Host: alto.example.com
                                                             Content-Type: multipart/related; boundary=example-2;
Accept: multipart/related;
                                                                          type=application/alto-endpointcost+json
         type=application/alto-endpointcost+json,
                                                                                                                           "meta": {
                                                             --example-2
                                                                                                                             "dependent-vtags": [
         application/alto-error+json
                                                             Content-ID: <ecs@alto.example.com>
Content-Length: 362
                                                             Content-Type: application/alto-endpointcost+json
                                                                                                                                 "resource-id": "endpoint-cost-pv.ecs",
                                                                                                                                 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"
Content-Type: application/alto-endpointcostparams
                                                               "meta": {
                                                                                                                                 "resource-id": "ane-props",
                                                                 "vtags": {
                                                                                                                                 "tag": "bf3c8c1819d2421c9a95a9d02af557a3"
  "cost-type": {
                                                                   "resource-id": "endpoint-cost-pv.ecs",
                                                                   "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"
     "cost-mode": "array",
     "cost-metric": "ane-path"
                                                                                                                           },
                                                                 "cost-type": {
                                                                                                                            'property-map": {
  },
                                                                   "cost-mode": "array",
                                                                                                                              .ane:NET1": {
  "endpoints": {
                                                                   "cost-metric": "ane-path"
                                                                                                                               "max-reservable-bandwidth": 5000000000,
     "srcs": [
                                                                                                                               "persistent-entity-id": "ane-props.ane:MEC1"
                                                                                                                             },
       "ipv4:192.0.2.34",
                                                                                                                              .ane:NET2": {
       "ipv6:2001:db8::3:1"
                                                                                                                               "max-reservable-bandwidth": 50000000000.
                                                               "endpoint-cost-map": {
                                                                                                                               "persistent-entity-id": "ane-props.ane:MEC2"
     ],
                                                                 "ipv4:192.0.2.34": {
                                                                                                                             },
     "dsts": [
                                                                   "ipv4:192.0.2.2": [ "NET3", "L1", "NET1" ],
                                                                                                                             ".ane:NET3": {
       "ipv4:192.0.2.2",
                                                                   "ipv4:192.0.2.50": [ "NET3", "L2", "NET2" ]
                                                                                                                               "max-reservable-bandwidth": 5000000000
                                                                                                                             },
       "ipv4:192.0.2.50",
                                                                 },
                                                                                                                             ".ane:L1": {
                                                                 "ipv6:2001:db8::3:1": {
       "ipv6:2001:db8::4:1"
                                                                                                                               "max-reservable-bandwidth": 1000000000
                                                                   "ipv6:2001:db8::4:1": [ "NET3", "L2", "NET2" ]
                                                                                                                              },
                                                                                                                             ".ane:L2": {
                                                                                                                               "max-reservable-bandwidth": 1500000000
  "ane-property-names": [
     "max-reservable-bandwidth",
                                                                "persistent-entity-id"
```

HTTP/1.1 200 OK

More details see https://datatracker.ietf.org/doc/html/draft-ietf-alto-path-vector-21#section-8.1

ALTO+FTS Visibility Mapping Example

Since usage on Plink 3 is over resource model, controller reduces concurrency levels of Pipe 1 and Pipe 2.