Standard Model electroweak highlights from CMS

with emphasis on
measurements of triple and quartic gauge couplings

Michał Szleper
National Center for Nuclear Research, Warsaw

on behalf of the CMS Collaboration
Research partially funded by NCN grant 2021/41/B/ST2/01369

What breaks the electroweak symmetry? Testing the EW sector of the Standard Model

- Standard Model electroweak gauge sector:
- 2 massive vector bosons: $W^{ \pm}, Z$,
- 1 massless vector boson: y,
- 2 triple gauge couplings: WWy, WWZ, and
- 4 quartic gauge couplings: WWWW, WWZZ, WWZy, WWyy.
- All the above couplings are completely determined by theory. Any non-SM couplings will invoke divergences and require new particles to restore unitarity.

Anomalous couplings $\quad \Leftrightarrow$ New particles

- Diboson production processes \rightarrow best to probe triple gauge couplings Single boson production in VBF mode \rightarrow independent probe of triple couplings Vector Boson Scattering \rightarrow best to probe quartic gauge couplings Triboson production processes \rightarrow independent probe of quartic gauge couplings

Standard Model Effective Field Theory

- A theoretically consistent framework to describe the low energy behavior of BSM physics in a (quasi-) model independent way

$$
\mathcal{L}_{\mathrm{Eff}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\cdots, \quad \mathcal{L}_{d}=\sum_{i} c_{i}^{(d)} \mathcal{O}_{i}^{(d)}
$$

O_{i} - operators invariant under SM, of dimensionalities higher than 4, suppressed by appropriate powers of $\wedge-$ the energy scale of new physics,
c_{i} - dimensionless Wilson coefficients.
The approximation will break down at the cutoff scale \wedge (unknown a priori)

- Of practical interest: dimension-6 operators $\mathrm{C}_{\text {mww }}, \mathrm{c}_{\mathrm{w}}, \mathrm{C}_{\mathrm{B}}$ for aTGCs, and dimension-8 operators S0-2, M0-7, T0-9 (18 in total) for aQGCs

Contribution to the different vertices:

	$\mathcal{O}_{S, 0}$,	$\mathcal{O}_{M, 0}$,	$\mathcal{O}_{M, 2}$,	$\mathcal{O}_{T, 0}$,	$\mathcal{O}_{T, 5}$,	$\mathcal{O}_{T, 8}$,
	$\mathcal{O}_{S, 1}$,	$\mathcal{O}_{M, 1}$,	$\mathcal{O}_{M, 4}$,	$\mathcal{O}_{T, 1}$,	$\mathcal{O}_{T, 6}$,	$\mathcal{O}_{T, 9}$
	$\mathcal{O}_{S, 2}$	$\mathcal{O}_{M, 7}$	$\mathcal{O}_{M, 5}$	$\mathcal{O}_{T, 2}$	$\mathcal{O}_{T, 7}$	
$W W W W$	X	X		X		
$W W Z Z$	X	X	X	X	X	
$Z Z Z Z$	X	X	X	X	X	X
$W W Z \gamma$		X	X	X	X	
$W W \gamma \gamma$		X	X	X	X	
$Z Z Z_{\gamma}$		X	X	X	X	X
$Z Z_{\gamma \gamma}$		X	X	X	X	X
$Z \gamma \gamma \gamma$				X	X	X
$\gamma \gamma \gamma \gamma$				X	X	X

Overview of CMS Run 2 results

CMS results @ 13 TeV - diboson production

WW PRD 102 (2020) 092001 36/fb
Total \& differential cross sections, limits on aTGCs
WZ JHEP 04 (2019) 122 36/fb, JHEP 07 (2022) 032 137/fb Total \& differential cross sections, limits on aTGCs incl. as a function of \wedge, comparison SM+Int.+BSM vs SM+Int., evidence of longitudinal polarizations

ZZ EPJC 78 (2018) 165 36/fb, EPJC 81 (2021) 200 137/fb Total \& differential cross sections, limits on ZZZ and ZZY

Wy PRL 126 (2021) 252002 137/fb Fiducial cross section, limits on aTGCs

Semileptonic WW+WZ

JHEP 12 (2019) 062 36/fb Limits (stringent!) on aTGCs

CMS results @ 13 TeV - single boson in VBF mode

W + 2 jets EPJ C 80 (2020) 43 36/fb Fiducial EW cross section, limits on aTGCs, studies of hadronic and jet activity

Z + 2 jets EPJ C 78 (2018) 589 36/fb Fiducial EW cross sections, limits on aTGCs, studies of hadronic and jet activity

Diboson cross sections and aTGCs summary

CMS results @ 13 TeV - VBS processes

ssWW \& WZ

ssWW PRL 120 (2018) 081801 36/fb, WZ PLB 795 (2019) 281 36/fb, ssWW, WZ PLB 809 (2020) 135710 137/fb >5 sigma observation, total and differential cross sections, limits on aQGCs (S0, S1, T0-2, M0, M1, M7) + comparison clipping vs no clipping Polarized ssWW

CMS results @ 13 TeV - VBS processes

Wy PLB 811 (2020) 135988 36/fb, PRD 108 (2023) 032017 138/fb \leftarrow NEW! >5 sigma observation, total and differential cross sections, limits on aQGCs (M0, M1, M7, M2-5, T0-2, T5-7)

Zy JHEP 06 (2020) 076 36/fb, PRD 104 (2021) 072001 137/fb
>5 sigma observation, total and differential cross sections, limits on aQGCs (M0-7, T0-2, T5-7, T8, T9)

VV semileptonic

WW+WZ+ZZ PLB 798 (2019) 134985 36/fb, WW+WZ PLB 834 (2022) 137438 137/fb 4.4 sigma evidence, total cross sections, limits (stringent!) on aQGCs (S0, S1, T0-2, M0, M1, M7)

VBF/VBS EW cross sections and aQGCs summary

aQGCs summary contd.: dim-8 T and S operators

dim-8 T operators

CMS results @ 13 TeV - triboson production

WWW PRD 100 (2019) 012004 36/fb WWW, WWZ, WZZ, ZZZ

PRL 125 (2020) 151802 137/fb 5 sigma observation (total), total cross sections, limits on aQGCs (WWW)

Wyy, Zyy JHEP 10 (2021) 174 137/fb
3.1 \& 4.8 sigma evidence, total cross sections, limits on aQGCs

WWW	Anomalous coupling	Allowed range (TeV^{-4})	
		Expected	Observed
	$f_{\mathrm{T}, 0} / \Lambda^{4}$	[-1.3, 1.3]	[-1.2, 1.2]
	$f_{\mathrm{T}, 1} / \Lambda^{4}$	[-3.7, 3.7]	[-3.3, 3.3]
	$f_{\mathrm{T}, 2} / \Lambda^{4}$	[-3.0, 2.9]	[-2.7, 2.6]

	$\mathrm{W} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$		$\mathrm{Z} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$	
Parameter	Expected	Observed	Expected	Observed
$f_{\mathrm{M} 2} / \Lambda^{4}$	$[-57.3,57.1]$	$[-39.9,39.5]$	-	-
$f_{\mathrm{M} 3} / \Lambda^{4}$	$[-91.8,92.6]$	$[-63.8,65.0]$	-	-
$f_{\mathrm{T} 0} / \Lambda^{4}$	$[-1.86,1.86]$	$[-1.30,1.30]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T1} 1} / \Lambda^{4}$	$[-2.38,2.38]$	$[-1.70,1.66]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 2} / \Lambda^{4}$	$[-5.16,5.16]$	$[-3.64,3.64]$	$[-9.72,9.32]$	$[-11.4,10.9]$
$f_{\mathrm{T} 5} / \Lambda^{4}$	$[-0.76,0.84]$	$[-0.52,0.60]$	$[-2.44,2.52]$	$[-2.92,2.92]$
$f_{\mathrm{T} 6} / \Lambda^{4}$	$[-0.92,1.00]$	$[-0.60,0.68]$	$[-3.24,3.24]$	$[-3.80,3.88]$
$f_{\mathrm{T} 7} / \Lambda^{4}$	$[-1.64,1.72]$	$[-1.16,1.16]$	$[-6.68,6.60]$	$[-7.88,7.72]$
$f_{\mathrm{T} 8} / \Lambda^{4}$	-	-	$[-0.90,0.94]$	$[-1.06,1.10]$
$f_{\mathrm{T} 9} / \Lambda^{4}$	-	-	$[-1.54,1.54]$	$[-1.82,1.82]$

What's new at this time:
 latest results, updates and followups

VBS: osWW first observation

PLB 841 (2023) 137495 arXiv:2205.05711

- DNN employed $(e \mu)$ to deal with dominant backgrounds: QCD induced WW, top production, DY. Kinematic inputs: $m_{j j}, p_{T^{1}},\left|\Delta \eta_{j j}\right|, p_{T^{2}}, Z_{12}, p_{T^{1}}, \Delta \varphi_{\|}, Z_{11}, m_{T^{1}}^{11}$.
- Data driven background normalization techniques (top, DY), simultaneous fit to the data including background dominated control regions (CRs).

top CR: inverted b veto, DY $e \mu \mathrm{CR}: \mathrm{m}_{\mathrm{T}}$ inverted ($<60 \mathrm{GeV}$), $50<\mathrm{m}_{\|}<80 \mathrm{GeV}$, DY ee, $\mu \mu$ CR: $\left|m_{\|}-m_{z}\right|<15 \mathrm{GeV}$.

VBS: osWW first observation

- Observed (expected) signal significance of 5.6 sigma (5.2 sigma)

$$
Z_{\mid l}=\left|Z_{11}+Z_{12}\right| / 2
$$

- Fiducial cross section: $\sigma=10.2 \pm 2.0 \mathrm{fb}$, (SM: $9.1 \pm 0.6 \mathrm{fb}$),
- Inclusive cross section ($\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{q}}>10 \mathrm{GeV}, \mathrm{m}_{\mathrm{qq}}>100 \mathrm{GeV}$): $\sigma=99 \pm 20 \mathrm{fb}$, (SM: $89 \pm 5 \mathrm{fb}$).

VBS: ssWW with 1t in the final state

CMS-PAS-SMP-22-008 Preliminary

- VBS topology
- One hadronic $\tau+1$ light lepton
- DNN applied to identify hadronic taus, kinematic inputs: $\mathrm{m}_{\mathrm{j}}, \mathrm{m}_{\mathrm{T}}\left(\mathrm{l}, \mathrm{p}^{\mathrm{T}}{ }^{\text {miss }}\right), \mathrm{p}^{\mathrm{T}}$, $\mathrm{p}_{\mathrm{T}^{2}}{ }^{2}, \mathrm{p}^{\mathrm{T}}, \mathrm{p}^{\mathrm{T}}$,
$M_{1 \mathrm{~T}}^{2}=\left(\sqrt{M_{t l}^{2}+p_{T}^{t t^{2}}}+p_{T}^{\mathrm{miss}}\right)^{2}-\left|\vec{p}_{T}^{T l}+\vec{p}_{T}^{\mathrm{miss}}\right|^{2}$,
$M_{o 1}^{2}=\left(p_{T}^{\tau}+p_{T}^{l}+p_{T}^{\text {miss }}\right)^{2}-\left|\vec{p}_{T}^{\tau}+\vec{p}_{T}^{l}+\vec{p}_{T}^{\text {miss }}\right|^{2}$.
- Data driven determination of non-prompt background
- Simultaneous fit to SR and CRs: OS CR: as SR but opposite sign, tt CR: OS and b veto reversed
- Observed (expected) signal significance: 2.7 (1.9) sigma.
- Look for intact forward protons reconstructed in near-beam detector (Precision Proton Spectrometer) +2 weak bosons decaying into boosted and merged jets.

CMS
central detector

Unique opportunity to independently study quartic vertices: WWyy and ZZyy (anomalous)

- The PPS allows to reconstruct the proton scattering angle and fractional momentum loss.
- N -subjettiness used to identify hadronic W and Z from QCD jets.

Signal selection: $\mathrm{p}^{\mathrm{j}}>200 \mathrm{GeV}, \mathrm{m}_{\mathrm{j}}>1126 \mathrm{GeV},\left|\Delta \eta_{\mathrm{j}}\right|>1.3$,
acoplanarity requirement: $\mathrm{a}=\left|1-\left|\left(\varphi_{\mathrm{ij}}-\varphi_{\mathrm{i} 2}\right)\right| / \pi\right|<0.01, \mathrm{p}_{\mathrm{T}^{1}} / \mathrm{p}_{\mathrm{T}^{2}}<1.3$

aQGC: exclusive yy \rightarrow WW, ZZ

- Matching protons to jets is based on respective rapidities and invariant masses

- Background: jets combined with unrelated protons from pileup, estimated from CRs defined by inverting acoplanarity and/or proton matching criteria.
- Cross sections upper limits at 95% CL: $\sigma(p p \rightarrow p W W p)<67 \mathrm{fb}, \sigma(p p \rightarrow p Z Z p)<43 \mathrm{fb}$.
- Limits on SMEFT dim-8 operators

Coupling	Observed (expected) 95\% CL upper limit No clippping	Observed (expected) 95\% CL upper limit Clipping at 1.4 TeV
$\left\|f_{M, 0} / \Lambda^{4}\right\|$	$66.0(60.0) \mathrm{TeV}^{-4}$	$79.8(78.2) \mathrm{TeV}^{-4}$
$\left\|f_{M, 1} / \Lambda^{4}\right\|$	$245.5(214.8) \mathrm{TeV}^{-4}$	$306.8(306.8) \mathrm{TeV}^{-4}$
$\left\|f_{M, 2} / \Lambda^{4}\right\|$	$9.8(9.0) \mathrm{TeV}^{-4}$	$11.9(11.8) \mathrm{TeV}^{-4}$
$\left\|f_{M, 3} / \Lambda^{4}\right\|$	$73.0(64.6) \mathrm{TeV}^{-4}$	$91.3(92.3) \mathrm{TeV}^{-4}$
$\left\|f_{M, 4} / \Lambda^{4}\right\|$	$36.0(32.9) \mathrm{TeV}^{-4}$	$43.5(42.9) \mathrm{TeV}^{-4}$
$\left\|f_{M, 5} / \Lambda^{4}\right\|$	$67.0(58.9) \mathrm{TeV}^{-4}$	$83.7(84.1) \mathrm{TeV}^{-4}$
$\left\|f_{M, 7} / \Lambda^{4}\right\|$	$490.9(429.6) \mathrm{TeV}^{-4}$	$613.7(613.7) \mathrm{TeV}^{-4}$

- Probes triple WWy vertex, quartic vertices WWyy \& WWZy
- Exactly two isolated opposite sign leptons $\left(\mathrm{e}^{+} \mu^{-}, \mathrm{e}^{-} \mu^{+}\right)+$photon
$p_{T}{ }^{\text {miss }}>20 \mathrm{GeV}, m_{\|}>10 \mathrm{GeV}, \mathrm{p}^{\mathrm{I}}>15 \mathrm{GeV}, \mathrm{m}_{\mathrm{T}}{ }^{\mathrm{w}}>10 \mathrm{GeV}$
- Simultaneous fit with CRs: ss WWy CR (non-prompt background): same sign \& no $m_{T}{ }^{W}$ cut, Top-y CR (top production): b veto inverted \& no $\mathrm{m}^{\mathrm{T}}{ }^{\mathrm{w}}$ cut.
- Observed (expected) signal significance:
5.6 (4.7) sigma.
- Fiducial cross section: $\sigma=6.0 \pm 1.7 \mathrm{fb}$, in agreement with SM (NLO QCD).

Diboson: Wy

PRD 105 (2022) 052003 arXiv:2111.13948

Probes WWy vertex, potential aTGC contributions from dim-6 operator $\mathrm{C}_{3 \mathrm{w}}$

- The interference issue of EFT
$\sigma \propto\left|A_{\text {full }}\right|^{2}=\left|A_{S M}\right|^{2}+\left(A_{S M} A_{\text {dim-6 }}^{*}+h c\right)+\left|A_{\text {dim-6 }}\right|^{2}$

$$
\sim \frac{c}{\Lambda^{2}}
$$

same order in \wedge as dim-8! driven by the interference term, otherwise it is not justified to truncate the expansion at dim-6.

- "Interference resurrection" achieved by looking at azimuthal angle φ between the +ve helicity lepton (1^{+}or anti-v) in the Wy c.o.m. frame (arXiv:1901.04821).

Here $\hat{y}=\hat{z} \times \hat{r}$,
\hat{r} - direction of Lorentz boost to the c.o.m. frame

Diboson: Wy

			$\sigma(\mathrm{fb})$					
Number of jets	Best fit	Stat	Syst	MG5_aMC+PY8	MATRIX	MCFM	MCFM (EW)	GENEVA
$=0$	1400_{-67}^{+71}	${ }_{-11}^{+11}$	${ }_{-67}^{+70}$	1650 ± 110	1473 ± 19	1544 ± 18	1471 ± 18	1584 ± 26
$=1$	1246_{-58}^{+61}	${ }_{-11}^{+11}$	${ }_{-57}^{+60}$	1590 ± 120	1304 ± 64	1397 ± 62	1376 ± 62	1490 ± 110
≥ 2	1037_{-79}^{+78}	${ }_{-10}^{+10}$	${ }_{-78}^{+77}$	820 ± 120	950 ± 260	990 ± 270	950 ± 270	790 ± 140

- The effects of SM-BSM interference show up in the distribution of φ.
- Limits on $\mathrm{C}_{3 w}$ calculated using SM+int. only become an order of magnitude more stringent by measuring φ and much closer to limits calculated using SM+int.+BSM

p_{T}^{γ} cutoff (GeV)	Best fit $\mathrm{C}_{3 W}\left(\mathrm{TeV}^{-2}\right)$		Observed 95\% CL (TeV $\left.{ }^{-2}\right)$		Expected 95\% CL (TeV ${ }^{-2}$)	
	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM
200	-0.86	-0.24	$[-2.01,0.38]$	$[-0.76,0.40]$	$[-1.16,1.27]$	$-0.81,0.71]$
300	-0.25	-0.17	$[-0.81,0.34]$	$[-0.39,0.28]$	$[-0.56,0.00]$	$[-0.33,0.33]$
500	-0.13	-0.025	$[-0.50,0.25]$	$[-0.15,0.12]$	$[-0.35,0.38]$	$[-0.17,0.16]$
800	-0.20	-0.033	$[-0.49,0.11]$	$[-0.10,0.08]$	$[-0.29,0.31]$	$[-0.097,0.095]$
1500	-0.13	-0.009	$[-0.38,0.17]$	$[-0.062,0.052]$	$[-0.27,0.02]$	$[-0.066,0.065]$

Outlook

- Run 2 has produced a lot of results from the EW gauge sector, including:
- diboson production cross sections WW, WZ, ZZ, Wy, WV,
- limits on anomalous triple couplings, including ZZZ (non-SM),
- electroweak diboson (VBS) cross sections ssWW, WZ, ZZ, Wy, Zy, WV+ZV, osWW
- study of quartic gauge couplings - limits have been put on all 18 relevant SMEFT dim-8 operators,
- triboson production cross sections VVV, Wyy, Zyy, WWy, and complementary check of quartic gauge couplings.
- The Standard Model is well.
- But we are only warming up for more data: Run 3 analyses are on the way and we look forward to Phase 2.
- We will benefit from additional statistics and we expect a lot of improvement in the EFT interpretation of the data.
- The most interesting results are yet to come!

