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Evolution equations

lnQ2 and ln1/x evolution
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Evolution equations

Color Glass Condensate framework
effective description valid in the saturation regime, where dense and
slow gluons (target) are described by classical fields traversed by a
fast and energetic probe (projectile),

[review by Gelis, Iancu, Jalilian-Marian, Venugopalan ’10]

basic degrees of freedom:
Wilson lines

U (⃗x)

dipole correlation function

S (⃗r) =
〈

tr
[
U†(⃗x)U (⃗x+ r⃗)

]〉
x⃗
.

for forward and nearly back-to-back jets, one can apply both the
TMD factorization and Color Glass Condensate (CGC) approaches
to compute the di-jet cross-section

[Marquet, Petreska, Roiesnel ’16, Caucal, Salazar, Schenke, Stebel,

Venugopalan ’23]

⇒ previous talks
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Evolution equations

Evolution

assuming a given distribution predict the distribution at larger Q2

DGLAP equation

assuming a given distribution predict the distribution at small x
BFKL (linear) equation
JIMWLK (non-linear) equation
BK (non-linear at leading color factor N) equation

Precision
LO: fixed coupling constant, tree-level splitting and recombination
amplitudes
NLO: running coupling constant, NLO splitting and recombination
amplitudes
resummation: LO + all-order resummation of a particular class of
contributions

kinematical constraint: resummation of contributions with (αs lnx)
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Kinematical constraint

Kinematical constraint

ordering of dipole lifetimes/sizes
natural in the language of dipoles
worked out and implemented for the BFKL and BK equations

[Motyka, Staśto ’09]

BK with collinear improvement
[Ducloué, Iancu, Mueller, Soyez, Triantafyllopoulos ’19, Ducloué, Iancu,

Soyez, Triantafyllopoulos ’19]

In summary:

target rapidity: η ≡ ln P−

|q−| = ln 2q+P−

Q2 = ln 1
x

dipole rapidity:

Y ≡ ln
q+

q+0
= ln

2q+P−

Q2
0

= ln
1
x
+ln

Q2

Q2
0
= η +ρ

Q0 is a soft scale of the unevolved target.
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Kinematical constraint

BK with collinear improvement

Evolution equation in the target rapidity η

[Ducloué, Iancu, Soyez, Triantafyllopoulos ’19]

∂ S̄r=|x−y |(η)

∂η
=

ᾱs

2π

∫
d2z

(x−y)2

(x− z)2(z−y)2
θ

(
η −δxyz

)
×

×
[
S̄xz(η −δ xz ,r )S̄zy (η −δ zy ,r )− S̄xy (η)

]
Comments:

fixed coupling constant for simplicity
r = |x−y |
rapidity shifts δ xz ,r =max{0, ln r2

|x−z |2 }

δxyz =max{δxz ,r ,δzy ,r}
S̄xy (η) = Sxy (Y = η +ρ)
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Kinematical constraint

BK with collinear improvement

Main differences:

dipole rapidity target rapidity

ρR
xz = ln |x−z |2

R2 δxz ,r =max{0, ln r2

|x−z |2 }
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Kinematical constraint

BK with collinear improvement

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
(x

/R
, η

 =
 3

.0
)

x/R

initial condition
LO: integration step = 0.001
LO: integration step = 0.01
KC: integration step = 0.01
KC: integration step = 0.1

KC RC: integration step = 0.01
KC RC: integration step = 0.1

JIMWLK equation with kinematical constraint 8/ 25



JIMWLK evolution equation

Warning notice

Status report: work in progress, no final results yet available.

Beyond the leading N order

JIMWLK equation describes the non-linear small-x evolution
it uses Wilson lines as fundamental degrees of freedom
two-point correlation function ⟨U†(x)U(y)⟩ gives the dipole
amplitude
two-point correlation functions with derivatives provide a basis for
small-x TMD structure functions
initial condition corresponds to a configuration of Wilson lines
numerically useful reformulation as a Langevin equation
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JIMWLK evolution equation

LO JIMWLK: Langevin formulation

U(x,s+δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δ s∑
y

K(x−y) ·ξ (y)

)
.

[Rummukainen, Weigert ’04, Lappi, Mantysaari ’14]
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JIMWLK evolution equation

Saturation scale evolution speed
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Figure: RinitialΛ is the only parameter of the initial condition and of the
evolution. Coinciding data from evolution for different values of RinitialΛ
corresponds to geometrical scaling.
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JIMWLK evolution equation with collinear improvement

Collinear improvement

All order resummation of corrections enhanced by kinematical
constraints. Known from BFKL studies to be important to correctly
describe phenomenology.

Langevin equation formulation

U(x,R,s+δ s) =

exp
(
−
√

δε ∑
y

√
αsθ(s−ρ

R
xy)U(y, R̂,s−∆R

xy )
[
Kxy ·ξ (y)

]
U†(y, R̂,s−∆R

xy )
)

×U(x,R,s)×

exp
(√

δε ∑
y

√
αsθ(s−ρ

R
xy)Kxy ·ξ (y)

)
,

ρR
xy = ln (x−y)2

R2 , ∆R
xy = θ

(
|x−y |−R

)
ρR

xy, R̂ =max(|x−y |,R), s = εαs .

[Hatta, Iancu ’16]
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Saturation scale evolution speed

JIMWLK with collinear improvement
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Figure: Preliminary results for the saturation scale evolution speed at
RinitialΛ = 0.1875 for different discretizations.
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JIMWLK evolution equation with collinear improvement

Several problems with the previous figure

gigantic discretization effects
evolution in Y ⇒ we need to translate the equation to η

do we reproduce the BK equation with the KC for the dipole
amplitude?
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JIMWLK in η with collinear improvement

Proposal

U(x,R,η +δε) =

exp
(
−
√

δε ∑
y

√
αsθ(s−PR

xy)U(y, R̂,s−∆R
xy )
[
Kxy ·ξ (y)

]
U†(y, R̂,s−∆R

xy )
)

×U(x,R,s)×

exp
(√

δε ∑
y

√
αsθ(s−PR

xy)Kxy ·ξ (y)
)
,

PR
xy = ln R2

(x−y)2 .
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JIMWLK in η with collinear improvement
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Figure: Preliminary results for the dipole amplitude with KC JIMWLK evolution
equation at η = 3.0.
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JIMWLK in η with collinear improvement

Reduction to the BK equation in η

The dipole amplitude is defined as

S(x,y = x+ r ,η) =
1
Nc

⟨trU†(x, r ,η)U(x+ r , r ,η)⟩.

In order to establish the dependence on η we expand
S(x,y = x+ r ,η + ε) in ε,

S(x,y = x+ r ,η + ε) =
1
Nc

⟨trU†(x, r ,η + ε)U(x+ r , r ,η + ε)⟩.
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JIMWLK in η with collinear improvement

Reduction to the BK equation in η

Expand the exponentials

exp
(
i
√

εα
L
n+1(x, r)

)
= 1+ i

√
εα

L
n+1(x, r)−

1
2

ε

(
α
L
n+1(x, r)

)2
,

exp
(
− i

√
εα

R
n+1(x, r)

)
= 1− i

√
εα

R
n+1(x, r)−

1
2

ε

(
α
R
n+1(x, r)

)2
,

leading to

U(n+1)ε(x, r)=Unε(x, r)+ i
√

ε

[
α
L
n+1(x, r)Unε(x, r)−Unε(x, r)αR

n+1(x, r)
]
+

+ ε

[
α
L
n+1(x, r)Unε(x, r)αR

n+1(x, r)−
1
2

(
α
L
n+1(x, r)

)2
Unε(x, r)+

− 1
2
Unε(x, r)

(
α
R
n+1(x, r)

)2]
,
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JIMWLK in η with collinear improvement

Example: one of the cross-terms

tr⟨(αR)†
n+1(x, r)U

†
nε(x, r)Unε(y, r)αR

n+1(y, r)⟩ξ =

=
1

π2 tr
∫
z,z′

αsθ(nε −δ
r
ryz )θ(nε −δ

r
rxz ′

)U†
nε−δ r

rxz ′
(z′, r)taK i

xz ′×

×Unε−δ r
rxz ′

(z′, r)U†
nε(x, r)×

×Unε(y, r)U†
nε−δ r

ryz
(z, r)tbK j

yzUnε−δ r
ryz
(z, r)⟨ξ i

a,n+1(z
′)ξ j

b,n+1(z)⟩ξ =

=
1

2π2N
2
c

∫
z
αsθ(nε −δ

r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS6(x,z,z,y,δxz ,δyz ,η)+

− 1
2π2 S(x,y,η)

∫
z
αsθ(nε −δ

r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yz
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JIMWLK in η with collinear improvement

All the terms yield

∂S(x,y,η)

∂η
=

ᾱs

2π

∫
z
S(x,y,η){

−θ(nε−δ
r
ryz )K

i
yzK

i
yz−θ(nε−δ

r
rxz )K

i
xzK

i
xz+θ(nε−δ

r
rxz )θ(nε−δ

r
ryz )K

i
xzK

i
yz

}
+

+
{

θ(nε −δ
r
ryz )K

i
yzK

i
yzS2(x,z,z,y,δyz ,δyz ,η)+

+θ(nε −δ
r
rxz )K

i
xzK

i
xzS2(x,z,z,y,δxz ,δxz ,η)+

−θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS2(x,z,z,y,δyz ,δyz ,η)+

−θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS2(x,z,z,y,δxz ,δxz ,η)

}
+

+θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS6(x,z,z,y,δxz ,δyz ,η)
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JIMWLK in η with collinear improvement

Recovering KC BK equation in η

Assuming that δxz = δyz = δ we have

S6(x,z,z,y,δxz ,δyz ,η) =

=
1
N2
c

tr
[
Unε−δ r

rxz
(z, r)U†

nε(x, r)Unε(y, r)U†
nε−δ r

ryz
(z, r)

]
×

× tr
[
U†
nε−δ r

rxz
(z, r)Unε−δ r

ryz
(z, r)

]
=

=
1
Nc

tr
[
U†
nε(x, r)Unε(y, r)

]
= S(x,y,η)

and setting

S2(x,z,z,y,δxz ,δxz ,η) = S2(x,z,z,y,δyz ,δyz ,η)≡ S2(x,z,z,y,δ ,η)

in that case the final results reduces to

∂S(x,y,η)

∂η
=

ᾱs

2π

∫
z
Kxyzθ(nε −δ )

{
S2(x,z,z,y,δ ,η)−S(x,y,η)

}
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JIMWLK in η with collinear improvement

Preliminary results
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JIMWLK in η with collinear improvement

Preliminary results
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JIMWLK in η with collinear improvement

Recovering KC BK equation in η

In order to diagnoze the dynamics we investigate new correlation
functions. The simplest is the correlation in η

S(r ,η) =
1

VNc
⟨tr U†(x, r ,0)U(x, r ,η)⟩x.

Preliminary results
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Conclusions

Summary

JIMWLK equation provides a way to describe DIS data deep in the
low-x regime
numerical implementation and solution possible using the
reformulation in terms of Langevin equation
many systematic effects/ambiguities have to be studied and
understood
collinear resummation for the JIMWLK evolution possible

Outlook

phenomenological implications/applications will soon be at reach!
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