Higgs boson measurements at CMS

<u>Michał Bluj</u> National Centre for Nuclear Research on behalf of the CMS Collaboration

XXX Cracow EPIPHANY Conference 8-12 January 2024

Introduction & overview

BEH mechanism(*) one of key features of the Standard Model:

a scalar field, with a non-zero vacuum expectation, responsible for the masses of particles

- $\circ~$ necessary for both gauge boson and fermion masses
- \circ predicts relation between gauge boson masses and couplings
 - preserves unitary of VV $_{\rightarrow}$ VV scattering (through cancellation of diagrams with exchange of V $_{\rm L}$ and H)
 - essential for renormalisability of the SM
- predicts existence of (at least one) Higgs boson
- Discovery of the boson confirmed the mechanism and gives insights to its details
- Higgs boson is special
 - The only (fundamental) scalar particle in SM (a dynamic explanation of BEH mechanism à la BCS theory will be a breakthrough)
 - Neither matter nor force carrier
 - Couples proportionally to mass

(*) Brout-Englert-Higgs(-Hagen-Guralnik-Kibble) – BEH(HGK) – mechanism XXX Epiphany, 9. I. 2024

Higgs measurements

- Many measurements enabled with large data-sets already collected
 - Precision measurements: mass & width, cross-section & couplings (incl. 3rd generation fermions),
 - Rare processes:

coupling to 2^{nd} generation: H $\rightarrow \mu\mu$, H $\rightarrow cc$, self coupling (HH), H->Zy/yy* (BSM in loops), "Invisible" decays

• BSM searches:

additional Higgs bosons, exotic decays, anomalous couplings

Collected pp data:

- Run-1 at 7&8TeV (2010–12) : ~5+20/fb
- Run-2 at 13 TeV (2015–18): ~140/fb
- Run-3 at 13.6 TeV (2022,23...): ~40+30/fb (no results yet)
- => No. of Higgs bosons at CMS O(10⁷)

Higgs measurements

- Many measurements enabled with large data-sets already collected
 - Precision measurements:

mass & width, cross-section & couplings (incl. 3rd generation fermions),

• Rare processes:

coupling to 2^{nd} generation: H $\rightarrow \mu\mu$, H $\rightarrow cc$, self coupling (HH), H->Zy/yy* (BSM in loops), "Invisible" decays

BSM searches: additional Higgs bosons, exotic decays, anomalous couplings

Great results thanks to collective efforts!

- excellent performance of the LHC machine
- extensive understanding of the performance of the CMS experiment
- o precision theoretical description of the Higgs boson as well as the backgrounds.
- application of sophisticated analysis techniques incl. machine learning

This talk: selection from a plethora of very interesting analyses preformed since Higgs boson discovery.

XXX Epiphany, 9. I. 2024

Appetiser: H mass peaks

Only the $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell=e,\mu$) peak visible for "naked eye" without background subtraction Typically S/B << 1 => precise background estimation crucial for Higgs

measuremts XXX Epiphany, 9. I. 2024

Mass measurement

m_{H}^{R} is a free parameter of the Standard Model m_{H} measured with fully reconstructed high-resolution final states: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell=e,\mu$)

Mass measurement requires excellent calibration of photon energies $(H \rightarrow \gamma \gamma)...$

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26

Calibrate reconstructed energy of photons with MC, MC/data with $Z \rightarrow ee$ events with account for differences between e and y

and lepton momenta (H \rightarrow ZZ* \rightarrow 4l)

- recover final state radiation photons
- fit lepton momenta with Z_1 mass constraint (usually on-shell Z boson) for each event
- compute $m_{_{41}}$ with uncertainty at event basis (with refitted lepton momenta)
- Measured with likelihood fit dependent on signal-strength parameter and m_{μ}

floating in the fit (+nuisance parameters for systematic uncertenties)

- di-photon mass in $H \rightarrow \gamma \gamma$ channel
- 3D fit in $H \rightarrow ZZ \rightarrow 4I$ with m_{4I} , its resolution and kinematic bkg/sig discriminant XXX Epiphany, 9. I. 2024

m_н: recent combined results

Combining $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ with Run 1 (5.1+19.7/fb) + 2016 data (36/fb)

Phys. Lett. B 805 (2020) 135425 JHEP 11 (2017) 047

Result: $m_{H} = 125.38 \pm 0.11$ (stat.) ± 0.09 (sys.) GeV

Statistical uncertainty dominates

m_{H} : $H \rightarrow 4\ell$ w/ full Run-2 data

$H \rightarrow ZZ^* \rightarrow 4\ell$ with Run 1 (5.1+19.7/fb) + Run-2 data (138/fb) (preliminary)

CMS-PAS-HIG-21-019

Stat. Only

Total (Stat. Only) 124.90^{+0.15} (^{+0.14}_{-0.14}) GeV

124.70^{+0.53}_{-0.51} (^{+0.49}_{-0.47}) GeV

125.50^{+0.27}_{-0.26} (^{+0.25}_{-0.24}) GeV

125.20^{+0.29}_{-0.27} (^{+0.27}_{-0.26}) GeV

125.04^{+0.12}_{-0.12} (^{+0.11}_{-0.11}) GeV

125.60^{+0.46}_{-0.45} (^{+0.43}_{-0.41}) GeV

125.08^{+0.12}_{-0.12} (^{+0.10}_{-0.10}) GeV

128

130

m_H (GeV)

126

- Total

Result: $m_{H} = 125.08 \pm 0.10$ (stat.) ± 0.05 (sys.) GeV

Statistical uncertainty bigger than systematic

Perspectives on m_H measurement

- $_{\odot}$ m_H known with high precision of ~0.1%
- $\,^{\odot}\,$ Big effort to calibrate leptons and photons in Run-2 lead to reduction of systematic uncertainty on m_{_{\rm H}}
 - Statistical component remains dominant (as in Run-1 measurement)
- $_{\odot}$ More precise m_H value can be expected
 - Using full Run 2 dataset in both channels
 - and combining channels (and experiments)

however, more accurate m_{μ} is not required by any prediction

• Precise calibration will be motivated by other physics

Total width mesurement

- When m_H is known Γ_H is predicted within Standard Model
 - $\circ~\Gamma_{_{\rm H}}$ = 4.1 MeV for $m_{_{\rm H}}$ = 125 GeV
- Deviations from this prediction would mean BSM physics

- $\, \odot \,$ The extraction of H couplings requires making assumption on $\Gamma_{_{\!H}}$
 - $\circ~$ e.g. no BSM decays, and $\Gamma_{_{\! H}}$ computed as a function of all coupling modifiers (κ)
 - $\circ~$ or, invisible or undetected decays allowed, but $\kappa_{w,z} \leq 1$
- $_{\odot}$ Expected $\Gamma_{_{H}}$ is much smaller than detector resolution of O(1 GeV) (O(1%))
- Is width measurement possible at LHC?
 - $\circ~$ Scanning of $\sigma(\mu\mu{\rightarrow}H)$ in function \sqrt{s} with muon collider considered as best method
 - Similarly one can consider $\sigma(ee \rightarrow H)$ with e+e- collider, but eeH coupling very small

XXX Epiphany, 9. I. 2024

Γ_{H} measurement: principles

◎ Off-shell $H^* \rightarrow VV$ (V=W,Z)

- Competing effects from BW (resonant shape) and $\Gamma_{H \rightarrow VV}$
- $\circ~~\sim 10\%~of~gg \rightarrow H \rightarrow ZZ~cross~section~for~m_{zz}{>}2m_z$
- This feature can be used to measure of the total Higgs width

=> combined on-shell and off-shell measurements allow to constrain width

 \odot Significant (destructive) interference with $gg \rightarrow VV$ continuum should be accounted for

XXX Epiphany, 9. I. 2024

Higgs total width: results

 Γ_{H} = 2.9^{+2.3} _{-1.7} MeV (in agreement with the SM expectation of 4.1 MeV) Lack of off-shell production excluded with >3 standard deviations

CMS-PAS-HIG-21-019

Perspectives on $\Gamma_{\rm H}$ measurement

- $_{\odot}~$ Off-shell production with ZZ decays provide a way to measure $\Gamma_{_{\rm H}}$ at LHC!
 - involves a few (weak) assumptions
- Precision is still smal (~100%)
 - still plenty room for new physics
- Systematic uncertainties can still improve e.g. on ZZ background
- Statistical uncertainties on off-shell yields are still large
 - these will improve for sure

Combined measurements

- Individual analyses study specific Higgs boson production & decay mode, i.e. its specific characteristic
 => need to combine them to get a maximally wide view of the Higgs boson
- Combine = perform common fit (with common parameters) across several individual analyses

	ggH	VBF	VH	ttH/tH
$H \to \gamma\gamma$	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow ZZ$	√	\checkmark	\checkmark	\checkmark
$H \rightarrow WW$	\checkmark	√	\checkmark	√
Η→ττ	√	√	\checkmark	√
H → bb	√		\checkmark	√
$H \to \mu \mu$	√	\checkmark	\checkmark	√
$H \to Z \gamma$	\checkmark	\checkmark	\checkmark	√
H → inv.	√	√	\checkmark	

- Results from recent combination: Nature 607 (2022), 60
- Most of the main production x decay channels included

Signal strength

 \odot Signal strength μ scales production cross section and branching fractions relative to SM predictions:

$$\mu_{i} = \frac{\sigma_{i}}{\sigma_{i}^{\text{SM}}} \qquad \qquad \mu^{f} = \frac{\mathscr{B}^{f}}{\mathscr{B}^{f}_{\text{SM}}} \qquad \qquad \mu_{i}^{f} = \frac{\sigma_{i} \cdot \mathscr{B}^{f}}{(\sigma_{i} \cdot \mathscr{B}^{f})_{\text{SM}}} = \mu_{i} \times \mu^{f}$$

or a global factor scaling all channels:

 $\mu = 1.002 \pm 0.057 =$

 $= 1.002 \pm 0.036$ (theo) ± 0.033 (syst) ± 0.029 (stat)

=> precision of ~6% still with significant contribution from statistics

Higgs boson production at LHC

Agreement with SM gluon-gluon fusion precision <10%! 10-20% precision on other main production processes

tH:

CMS

g 000000

g 000000

+0.07

-0.06

+0.16

-0.15

-0.12

4.5

Higgs boson decays

Agreement with SM

Precision on main bosonic decays & decays to τ ~10% Precision on H $_{\rightarrow}$ bb ~20%

Uncertainties on rare decays (µµ, Zγ) still sizeable XXX Epiphany, 9. I. 2024

Differential cross sections

Differential cross section measurements in several channels: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow \tau\tau$, $H \rightarrow WW \rightarrow 2\ell 2\nu$ in their respective fiducial phase space

Example: set of measurements in $H \rightarrow \gamma\gamma$ (JHEP07(2034) 091)

 $\sigma_{fid} = 73.4^{+5.4}_{-5.3}(stat)^{+2.4}_{-2.2}(syst) \text{ fb}$ SM: 75.4±4.1 fb

Opportunity to study:

- dynamics of H production,
- constrains of couplings,
- additional jet structure...

Good agreement with the SM

Coupling measurements

Coupling modifier, $\kappa = g/g_{SM}$, framework => parametrisation of inclusive production and decay rates (assumes factorisation, i.e. zero-width approx.)

Loop scaling factors (κ_g , κ_{γ}) can be expressed in terms SM coupling scaling factors (resolved) or treated as free parameters => effective couplings sensitive on BSM

 $Γ_H$ requires assumptions, $κ_H = κ_H(κ_W, κ_Z,...)$, because of inaccessible decays (SM-like, i.e. resolved and no BSM couplings, or with inv./undet. allowed with $κ_{W,Z} ≤ 1$ and effective loops)

Couplings: vector bosons vs fermions

Scale all vector boson couplings with κ_v , all fermion couplings with κ_F

Individual couplings

Couplings follow expectation of the SM

XXX Epiphany, 9. I. 2024

XXX

Higgs self-coupling

V (ø)

22

Determining the Higgs potential, are H self-couplings as predicted by SM?

- Higgs boson self-couplings defined by $m_{\rm H}$ in SM

$$V(\Phi) = -\mu^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2}$$

$$\downarrow \Phi \rightarrow v + H$$

$$V = V_{0} + \left(\frac{1}{2}m_{H}^{2}H^{2}\right) + \left(\lambda v H^{3} + \frac{1}{4}\lambda H^{4}\right)$$

$$\downarrow Mass term$$
Self- and quadratic couplings
Proportional to m_H in SM
$$\frac{H}{U} = --- \left(\frac{3m_{H}^{2}}{v} + \frac{3m_{H}^{2}}{v}\right)$$

$$H = H + \frac{3m_{H}^{2}}{v^{2}}$$

Higgs self-coupling

Determining the Higgs potential, are H self-couplings as predicted by SM?

- Higgs boson self-couplings defined by $\rm m_{_{H}}$ in SM

Very difficult due to the "direct" double H production, which interferes with the signal

Probably hopeless in any planned experiment

(ø)

HH events from the self-interaction diagrams are soft Multitude of HH channels, no golden one => Complex analyses (ML usage)

Search for HH process

Current (Run-2) sensitivity to observe HH with ~3×SM cross-section => need 3/ab of HL-LHC data

Constraints for $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SMHHH}$ at 95% CL:

- -1.3 < $\kappa_{_{\!\lambda}}$ < 6.4 (only HH) and
- $-3.6 < \kappa_{\lambda} < 12.6$ (loop corrections to single-H cross-section)

CMS

Summary

Only a small sample Higgs measuremnts at CMS presented today

- We have learned much about the Higgs boson since its discovery
 - $\circ~$ Its mass is known with ~0.1% precision
 - First measurements of its total withdth (with off-shell decays) performed
 - $\circ~$ Cross-section known with up to ~10% precision
 - Couplings to other particles probed
- \odot Still need to establish couplings to 2nd generation fermions
 - Coupling to muons on the reach of LHC, c-quark probably not and Higgs self coupling
 - $\circ~$ HH pair production should be observed in HL-LHC

=> Results in agreement with the Standard Model

- Data-taking continues:
 - Waiting for good amount of Run-3 data
 - HL-LHC, with upgraded CMS detector, improved theory calculations and analysis techniques will enable even more precise measurements