

Precision measurements of Higgs boson properties with the ATLAS experiment

Martina Javurkova

(University of Massachusetts-Amherst)

On behalf of the ATLAS collaboration

Cracow Epiphany Conference 2024

8th - 12th January 2024

Introduction

• Higgs boson is a **fundamental particle**, even under CP inversion, predicted by the BEH mechanism

• Higgs boson mass is not predicted by the theory and needs to be estimated experimentally

Stability of the electroweak vacuum (i.e. of our universe) depends on this value

• Strength of the interaction between the Higgs boson and other elementary particles

- Predicted by the SM once the Higgs boson mass is known
- Gauge couplings: essential test of the spontaneous electroweak symmetry breaking
- Yukawa couplings: important test of the CP structure of the Higgs boson couplings
- The best possible knowledge of its properties is essential

Test the SM

> Any deviation could imply new physics

- Parametrised within the *k*- or **EFT framework**

Piled Higher and Deeper (PHD Comics)

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 2

More than 10 years since its discovery

▶ Run 1: Higgs boson discovery announced by ATLAS and CMS in 2012 (~10 ifb @7/8 TeV)

Full Run 2 dataset: 30 times more Higgs events than at the time of its discovery (139 ifb @13 TeV)

• Run 3 ongoing: hopefully the statistics will triple (so far ~66 ifb @13.6 TeV)

More than 10 years since its discovery

▶ Run 1: Higgs boson discovery announced by ATLAS and CMS in 2012 (~10 ifb @7/8 TeV)

• Full Run 2 dataset: 30 times more Higgs events than at the time of its discovery (139 ifb @13 TeV)

• Run 3 ongoing: hopefully the statistics will triple (so far ~66 ifb @13.6 TeV)

Higgs boson production

- About 9M Higgs bosons produced in ATLAS (~27k reconstructed) during Run 2
- ▶ggF is the dominant production process at LHC and provides <u>indirect</u> measurement of top Yukawa coupling via virtual loops
- ttH provides <u>direct</u> measurement of top Yukawa coupling
- ▶ggF and VBF observed during Run 1
- ▶ WH, ZH and ttH+tH observed during Run 2

Higgs boson production

Nature 607, 52 (2022)

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 6

Higgs boson decay

- ► First discovered in bosonic decay channels: $H \rightarrow ZZ^*, H \rightarrow WW^*, H \rightarrow \gamma\gamma$
- Interactions with third generation fermions well measured: $H \rightarrow \tau \tau$, $H \rightarrow b\bar{b}$
- Measurements of Higgs couplings to secondgeneration fermions challenging: $H \rightarrow \mu\mu$, $H \rightarrow c\bar{c}$
- + $\gamma\gamma$, ZZ, WW and $\tau\tau$ observed during Run 1
- $b\bar{b}$ observed during <u>**Run 2**</u> / $\mu\mu$, <u>Z</u> γ , <u>c</u> \bar{c} not yet

Precision measurements of the Higgs boson with ATLAS Epip

Higgs boson decay

Nature 607, 52 (2022)

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

• Different combinations of Higgs production and decay ($\sigma \times B$) measurements allow detailed tests of the SM

Excellent agreement with the SM prediction (p-value=72%)

• Combined measurement of the inclusive Higgs production cross-section

Assuming that all production and decay processes scale with the **same** global signal strength¹

• $\mu = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.) $= 1.05 \pm 0.06$

Epiphany 2024 9

Higgs boson couplings

Nature 607, 52 (2022)

• Results interpreted within the κ -framework with a set of coupling strength modifiers¹: $\kappa_p^2 = \sigma_p / \sigma_p^{SM}$ or $\kappa_p^2 = \Gamma_p / \Gamma_p^{SM}$

Scaling of the Higgs couplings to the SM particles as a function of their mass agrees with the SM

Epiphany 2024 10

Simplified template x-sections

- **STXS** = powerful framework for Higgs cross-section production measurements
 - Enables studying kinematic properties of the Higgs production and probing the internal structure of its couplings
 - Partitions phase space into mutually exclusive regions specific to different <u>Higgs production modes</u>
 - Allows for a combination of all measurements in different decay channels
 - Maximises experimental sensitivity
 - Minimising the dependence on theoretical uncertainties that are directly folded into the measurements

Simplified Template Cross Sections - Stage 1.1

Simplified template x-sections

• Full Run 2 results performed in 36 regions consistent with the SM predictions (p-value=94%)

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Fiducial x-sections

• **Fiducial x-section** = x-section measured in a phase space closely matching **detector** and **analysis** acceptance

• Minimises extrapolation effects (extrapolation to the full phase space often required to combine analyses)

• Enough data to perform not only inclusive but also differential x-section measurements

Measurements performed as a function of various variables sensitive to the properties of Higgs boson

Measured cross-sections corrected for detector inefficiency and resolution to the particle level, through unfolding

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 13

- Single- and double-differential measurements performed in ggF-enriched region ($N_{\rm jet} < 2$)
- Signal in each interval of the observable under consideration is extracted from a fit to m_T
- ▶ 8 observables sensitive to the Higgs production $(p_T^H, |y_{i0}|)$ and decay $(p_T^{\ell 0}, p_T^{\ell \ell}, m_{\ell \ell}, y_{\ell \ell}, \Delta \phi_{\ell \ell}, \cos \theta^*)$ kinematics
- Normalisations of WW, top-quark and Z/γ^* bkgs obtained from the simultaneous fit to data using dedicated CRs
- Dominant systematic uncertainties: jet and muon reconstruction, theoretical modelling of top and WW bkgs

x-sections in VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ PRD 108, 072003

- Integrated x-section measurements performed in VBF-enriched region ($N_{\text{jet}} \ge 2$)
- Dedicated BDT discriminants used to separate VBF from top+VV and top+VV from other backgrounds
- Overall relative precision is about 23%, dominated by the statistical uncertainty in the data sample

Dominant systematic uncertainties are theoretical (signal modelling), largest experimental uncertainty is JER

x-sections in VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ prd 108, 072003

- <u>Differential</u> x-section measurements performed in VBF-enriched region ($N_{\text{jet}} \ge 2$)
- Signal extracted from a simultaneous likelihood fit of BDT discriminants to data in several kinematic regions
- ▶ 13 observables sensitive to the Higgs production and decay

 $\bullet p_{\mathrm{T}}^{H}, p_{T}^{\ell\ell}, p_{T}^{\ell_{1}}, p_{T}^{\ell_{2}}, m_{\ell\ell}, |\Delta y_{\ell\ell}|, |\Delta \phi_{\ell\ell}|, \cos \theta_{\eta}^{*}, p_{T}^{j_{1}}, p_{T}^{j_{2}}, m_{jj}, |\Delta y_{jj}|, \Delta \phi_{jj}$

 $\int_{0.005}^{0.005} ATLAS$ $\sqrt{s} = 13 \text{ Terms}$ $\sqrt{s} = 13 \text{ Terms}$ Uncertainties driven by the data statistical uncertainty Data Powheg+Pythia8 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Data Stat. Unc. A Powheg+Herwig7 Data Total Unc. VBFNLO@LO+Pythia8 VBF $H \rightarrow WW^* \rightarrow evuv$ Events / bin width ATLAS VBFNLO@NLO SR1 MG5+Herwig7 | m_{jj} Bin4 x2 Bin5 ا_{ال} $\begin{array}{c|c} 800 - m_{jj} \operatorname{Bin1} & m_{jj} \operatorname{Bin2} \\ \hline x1 & x2 \end{array}$ m_{jj} Bin3 x2 0.002 600 0.001 400 200 -0.001 2.5 Pred. / Data Data / Pred. .5 • 0.5E 0^L 0 500 1000 1500 2000 6000 0.5 0.5 0.5 0.5 0.5 $D_{\rm VBF}$ m_{ii} [GeV] Martina Javurkova (UMass) Precision measurements of the Higgs boson with ATLAS Epiphany 2024 16

x-sections in VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ PRD 108, 072003

Results also interpreted in SMEFT framework

• BSM interactions introduced via extra higher-dimensional operators $\mathcal{O}_i^{(d)}$ (only d = 6 considered)

• Wilson coefficients constrained one at a time using the most sensitive differential distribution most sensitive

x-sections at 13.6 TeV

► Inclusive production x-sections measured in two channels: $H \rightarrow ZZ^* \rightarrow 4\ell$ (29.0 ifb) and $H \rightarrow \gamma\gamma$ (31.4 ifb)

• Measured fiducial x-sections compatible with the SM predictions of 67.6 ± 3.7 fb ($\gamma\gamma$) and 3.67 ± 0.19 fb (4ℓ)

• $\sigma_{\gamma\gamma}^{\text{fid}} = 76^{+14}_{-13} \,\text{fb}$ and $\sigma_{4\ell}^{\text{fid}} = 2.80 \pm 0.74 \,\text{fb}$

• Extrapolated to the full phase space, in agreement with the SM prediction of 59.9 ± 2.6 pb

• $\sigma(pp \to H) = 58.2 \pm 7.5$ (stat.) ± 4.5 (syst.) pb = 58.2 ± 8.7 pb

Non-resonant backgrounds

•4 ℓ : constrained from dedicated data sidebands

• $\gamma\gamma$: described by a function fitted to data

- Dominated by the statistical uncertainty
- Main systematic uncertainties: e and μ uncertainties (4 ℓ), background modelling and photon efficiency ($\gamma\gamma$)

¹ Measurements restricted to a particle-level phase space closely matching detector-level kinematic selection, corrected for detector effects Martina Javurkova (UMass) *Precision measurements of the Higgs boson with ATLAS* Epiphany 2024 ¹⁸ $\bullet m_H$ is a fundamental parameter in the SM, not predicted by the theory, crucial for determining other properties

• Measured in $H \to ZZ^* \to 4\ell$ and $H \to \gamma\gamma$ decay channels due to their excellent mass resolution (1-2%)

• Fully reconstructable final states with a clean signature

• Full Run 2 measurement in $H \rightarrow \gamma \gamma$ channel

- To increase the precision of the measurement, events are classified into 14 categories based on:
 - Detector region: central-barrel, outerbarrel and endcap
 - Number of reconstructed converted photon candidates: U-type (0) and Ctype events (≥ 1)

• $p_{Tt}^{\gamma\gamma}$: low, medium and high

 $\bullet m_H$ is a fundamental parameter in the SM, not predicted by the theory, crucial for determining other properties

• Measured in $H \to ZZ^* \to 4\ell$ and $H \to \gamma\gamma$ decay channels due to their excellent mass resolution (1-2%)

• Fully reconstructable final states with a clean signature

• Full Run 2 measurement in $H \rightarrow \gamma \gamma$ channel

- Signal described by a *double-sided Crystal* Ball parametric in m_H
- Background (non-resonant $\gamma\gamma$ production) represented by either an *exponential function*, a *power-law function* or an *exponentiated second-order polynomial* chosen by fitting $m_{\gamma\gamma}$
- Systematic uncertainty reduced by a factor of 4 wrt the previous measurement based on partial Run 2 data

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

• Full Run 2 measurement in $H \rightarrow \gamma \gamma$ channel

ightarrow 0.1% precision reached in a single channel

 $m_H = 125.17 \pm 0.11$ (stat.) ± 0.09 (syst.) GeV = 125.17 ± 0.14 GeV

Higgs boson mass in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ arXiv:2308.04775

• Combination of Run 1 and Run 2 measurements in $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ final states

• The most precise measurement of m_H up to date (0.09 % precision):

 $m_H = 125.10 \pm 0.09 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \text{ GeV} = 125.11 \pm 0.11 \text{ GeV}$

Dominant sources of systematic uncertainties associated to the electron and photon energy scales

Martina Javurkova (UMass) Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 22

Higgs boson width

SM predicts the Higgs total width of 4.1 MeV

Theoretical line-shape (narrow relativistic Breit-Wigner distribution)

convoluted with the detector response

• Too small for detector resolution

ass) Precision measurements of the Higgs boson with ATLAS Epi

Martina Javurkova (UMass)

Epiphany 2024 23

Higgs boson width

SM predicts the Higgs total width of 4.1 MeV

▶ Too small for detector resolution

Can be obtained from the *ratio of on-shell and* off-shell Higgs productions

 Assuming that the on-shell and off-shell coupling constants evolve like in SM

The interference between the signal and background is large and destructive

Higgs boson width

SM predicts the Higgs total width of 4.1 MeV

- ▶ Too small for detector resolution
- Can be obtained from the *ratio of on-shell and* off-shell Higgs productions

$$\Rightarrow \sigma_{gg \to H \to ZZ}^{\text{off-shell}} / \sigma_{gg \to H \to ZZ}^{\text{on-shell}} \sim \Gamma_H$$

- Assuming that the on-shell and off-shell coupling constants evolve like in SM
- The interference between the signal and background is large and destructive

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 25

Full Run 2 measurement

Observables

- 4ℓ : built from NN outputs trained with kinematic information of the four lepton from MC simulation and also the square of the modulus of the values of the LO ME
- $2\ell^2\nu$: transverse mass of the ZZ system
- Signal regions: defined as $m_{4\ell} > 220 \text{ GeV}$
 - **EW SR**: $n_{\text{jets}} \ge 2$ and $|\Delta \eta_{jj}| > 4.0$
 - Mixed SR: $n_{\text{iets}} = 1$ and $\eta_i > 2.2$
 - ▶ggF SR: remaining events

Full Run 2 measurement

- Each background has a dedicated control region and a floating normalisation in the fit
- Main systematic uncertainties:
 - ▶ Exp: parton shower (QSF, CKKW), jet-related uncertainties
 - Theory: high-order corrections
- Statistically limited measurement: $\Gamma_H = 4.5^{+3.3}_{-2.5} \text{ MeV}$
- Background-only hypothesis rejected with 3.3σ significance \Rightarrow evidence for the off-shell Higgs production
- Results also interpreted in SMEFT framework

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 27

ATL-PHYS-PUB-2023-012

PLB 846 (2023) 138223

Conclusion

- With Run 1 and Run 2 data, we are entering the **era of precision measurements** of the Higgs properties
 - ► ~6% precision on the inclusive Higgs boson production cross-section [Nature 607, 52 (2022)]
 - > 7-12% precision on the Higgs boson couplings to the three heaviest fermions (t, b, τ) [Nature 607, 52 (2022)]
 - > ~5% precision on the Higgs boson couplings to the weak bosons (W, Z) [Nature 607, 52 (2022)]
 - 0.09% precision on the Higgs boson mass [PLB 847 (2023) 138315], [arXiv:2308.04775]
 - ~60% precision on the Higgs boson total width [PLB 846 (2023) 138223]
- Differential cross-sections measured in several channels and sensitive variables [EPJC 83 (2023) 774], [PRD 108, 072003]
 - Results in a good agreement with the SM predictions
 - Generally dominated by statistical uncertainties
- First Run 3 measurements of the fiducial and total production cross-sections with 2022 data [arXiv:2306.11379]
 - Potential to significantly improve accuracy and achieve sensitivity to rare processes
 - See talk Prospects for single- and di-Higgs measurements at the HL-LHC (ATLAS and CMS) by Lei Zhang later today

Conclusion

- With Run 1 and Run 2 data, we are entering the **era of precision measurements** of the Higgs properties
 - ▶ ~6% precision on the inclusive Higgs boson production cross-section [Nature 607, 52 (2022)]
 - > 7-12% precision on the Higgs boson couplings to the three heaviest fermions (t, b, τ) [Nature 607, 52 (2022)]
 - > ~5% precision on the Higgs boson couplings to the weak bosons (W, Z) [Nature 607, 52 (2022)]

Differential cross-sections measured in several channels and sensitive variables [EPJC 83 (2023) 774], [PRD 108, 072003]

- Results in a good agreement with the SM predictions
- Generally dominated by statistical uncertainties

First Run 3 measurements of the fiducial and total production cross-sections with 2022 data [arXiv:2306.11379]

- Potential to significantly improve accuracy and achieve sensitivity to rare processes
- See talk Prospects for single- and di-Higgs measurements at the HL-LHC (ATLAS and CMS) by Lei Zhang later today

BACKUP

Nature Reviews Physics volume 3, pages 608–624 (2021)

LHC: interactions per crossing

Public ATLAS Luminosity Results

	(a) $B_{inv.} = B_{u.} = 0$	(b) B_{inv} free, $B_{u} \ge 0$, $\kappa_{W,Z} \le 1$
KΖ	$0.99^{+0.06}_{-0.06}$	$0.98^{+0.02}_{-0.05}$
κ _W	$1.05^{+0.06}_{-0.06}$	$1.00_{-0.02}$
K _t	$0.94^{+0.11}_{-0.11}$	$0.94^{+0.11}_{-0.11}$
КЪ	$0.89^{+0.11}_{-0.11}$	$0.82^{+0.09}_{-0.08}$
K_{τ}	$0.93^{+0.07}_{-0.07}$	$0.91^{+0.07}_{-0.06}$
Kμ	$1.06^{+0.25}_{-0.30}$	$1.04^{+0.23}_{-0.30}$
Кд	$0.95^{+0.07}_{-0.07}$	$0.94^{+0.07}_{-0.06}$
Κγ	$1.01^{+0.06}_{-0.06}$	$0.98^{+0.05}_{-0.05}$
KZγ	$1.38^{+0.31}_{-0.37}$	$1.35^{+0.29}_{-0.36}$
$B_{inv.}$	-	< 0.13
$B_{u.}$	-	< 0.12

Measured Higgs boson coupling modifiers per particle type

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Production	Effective	Parametrization in terms of coupling strength modifiers
cross section	coupling	r araneurization in terms of coupling strength mounters
$\sigma(\mathrm{ggF})$	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$
$\sigma(\text{VBF})$	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$
$\sigma(qq/qg \to ZH)$	-	κ_Z^2
$\sigma(gg \to ZH)$	-	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t - 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$
$\sigma(WH)$	-	κ_W^2
$\sigma(t\bar{t}H)$	-	κ_t^2
$\sigma(tHW)$	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$
$\sigma(tHq)$	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$
$\sigma(b\bar{b}H)$	-	κ_b^2
Partial decay width		
Γ^{bb}	-	κ_{b}^{2}
Γ^{WW}	-	κ_W^2
Γ^{gg}	κ_g^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$
$\Gamma^{\tau\tau}$	-	κ_{τ}^2
Γ^{ZZ}	-	κ_Z^2
Γ^{cc}	-	$\kappa_c^2 \ (= \kappa_t^2)$
$\Gamma^{\gamma\gamma}$	2	$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$
1 **	κ_{γ}	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b - 0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$
$\Gamma^{Z\gamma}$	$\kappa_{Z\gamma}^2$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$
Γ^{ss}	-	$\kappa_s^2 \ (= \kappa_b^2)$
$\Gamma^{\mu\mu}$	-	κ_{μ}^2
Total width $(B_{inv.} =$	$B_{\rm u.}=0)$	
Γ	<i>u</i> ²	$0.581\kappa_b^2 + 0.215\kappa_W^2 + 0.082\kappa_g^2 + 0.063\kappa_\tau^2 + 0.026\kappa_Z^2 + 0.029\kappa_c^2$
I H	ĸН	$+0.0023 \kappa_{\chi}^{2} + 0.0015 \kappa_{Z_{\chi}}^{2} + 0.0004 \kappa_{s}^{2} + 0.00022 \kappa_{\mu}^{2}$

Parametrisations of Higgs boson production cross sections, partial decay widths, and the total width, normalised to their SM values, as functions of the coupling strength modifiers κ

STXS	Cross section [pb]	SM prediction [pb]
$gg \rightarrow H, 0$ -jet, $p_T^H < 10 \text{ GeV}$	$5.8 \pm 1.3(^{+1.2}_{-1.1}(stat.)^{+0.7}_{-0.6}(syst.))$	6.6 ± 0.9
$gg \rightarrow H, 0$ -jet, $10 \le p_T^H < 200 \text{ GeV}$	$25.4^{+2.7}_{-2.6}(\pm 1.8(stat.)^{+2.0}_{-1.8}(syst.))$	20.6 ± 1.5
$gg \rightarrow H$, 1-jet, $p_T^H < 60 \text{ GeV}$	$5.2 \pm 1.7(\pm 1.3(stat.) \pm 1.1(syst.))$	6.5 ± 0.9
$gg \rightarrow H$, 1-jet, $60 \le p_T^H < 120 \text{ GeV}$	$5.5^{+1.2}_{-1.1}(\pm 1.0(stat.)^{+0.7}_{-0.6}(syst.))$	4.5 ± 0.6
$gg \rightarrow H$, 1-jet, $120 \le p_T^H < 200 \text{ GeV}$	$0.73^{+0.30}_{-0.29}(\pm 0.25(stat.)^{+0.16}_{-0.14}(syst.))$	0.75 ± 0.13
$gg \rightarrow H, \ge 2$ -jet, $m_{jj} < 350$ GeV, $p_T^H < 120$ GeV	$1.2 \pm 1.4(\pm 1.2(stat.) \pm 0.7(syst.))$	3.0 ± 0.6
$gg \rightarrow H, \ge 2$ -jet, $m_{jj} < 350$ GeV, $120 \le p_T^H < 200$ GeV	$0.9 \pm 0.4(\pm 0.4(stat.) \pm 0.2(syst.))$	0.94 ± 0.22
$gg \rightarrow H, \ge 2$ -jet, $m_{jj} \ge 350$ GeV, $p_T^H < 200$ GeV	$0.9 \pm 0.7(\pm 0.6(stat.) \pm 0.3(syst.))$	0.88 ± 0.21
$gg \rightarrow H, 200 \le p_T^H < 300 \text{ GeV}$	$0.66^{+0.16}_{-0.15}({}^{+0.13}_{-0.12}(stat.){}^{+0.10}_{-0.08}(syst.))$	0.46 ± 0.10
$gg \rightarrow H, 300 \le p_T^H < 450 \text{ GeV}$	$0.08 \pm 0.05 (\substack{+0.05 \\ -0.04} (stat.) \pm 0.02 (syst.))$	0.106 ± 0.027
$gg \to H, p_T^H \ge 450 \text{ GeV}$	$0.036^{+0.024}_{-0.020}(^{+0.023}_{-0.020}(stat.)^{+0.008}_{-0.005}(syst.))$	0.018 ± 0.005
$qq \rightarrow Hqq, \leq 1$ -jet	$0.6^{+2.0}_{-1.8}(^{+1.9}_{-1.8}(stat.) \pm 0.6(syst.))$	2.16 ± 0.06
$qq \rightarrow Hqq, \ge 2$ -jet, $m_{jj} < 350$ GeV, VH -enriched	$0.34^{+0.26}_{-0.24}({}^{+0.23}_{-0.22}(stat.){}^{+0.12}_{-0.11}(syst.))$	0.510 ± 0.016
$qq \rightarrow Hqq, \ge 2$ -jet, $m_{jj} < 350$ GeV, VBF -enriched	$1.8^{+1.1}_{-1.0}({}^{+1.0}_{-0.9}(stat.){}^{+0.5}_{-0.4}(syst.))$	0.735 ± 0.019
$qq \rightarrow Hqq, \ge 2$ -jet, 350 $\le m_{jj} <$ 700 GeV, $p_T^H <$ 200 GeV	$0.49^{+0.26}_{-0.24}({}^{+0.23}_{-0.21}(stat.){}^{+0.13}_{-0.10}(syst.))$	0.535 ± 0.013
$qq \rightarrow Hqq, \ge 2$ -jet, 700 $\le m_{jj} < 1000$ GeV, $p_T^H < 200$ GeV	$0.30^{+0.14}_{-0.12}({}^{+0.12}_{-0.11}(stat.){}^{+0.06}_{-0.05}(syst.))$	0.256 ± 0.007
$qq \rightarrow Hqq, \ge 2$ -jet, 1000 $\le m_{jj} < 1500$ GeV, $p_T^H < 200$ GeV	$0.30^{+0.11}_{-0.10}({}^{+0.10}_{-0.09}(stat.){}^{+0.05}_{-0.04}(syst.))$	0.224 ± 0.006
$qq \rightarrow Hqq, \ge 2$ -jet, $m_{jj} \ge 1500$ GeV, $p_T^H < 200$ GeV	$0.26^{+0.08}_{-0.07}(\pm 0.07(stat.)^{+0.04}_{-0.03}(syst.))$	0.216 ± 0.006
$qq \rightarrow Hqq, \ge 2$ -jet, 350 $\le m_{jj} < 1000 \text{ GeV}, p_T^H \ge 200 \text{ GeV}$	$0.04 \pm 0.05 (^{+0.05}_{-0.04}(stat.) ^{+0.02}_{-0.01}(syst.))$	0.0737 ± 0.0017
$qq \rightarrow Hqq, \ge 2$ -jet, $m_{jj} \ge 1000$ GeV, $p_T^H \ge 200$ GeV	$0.086^{+0.022}_{-0.021}(\pm 0.019(stat.) {}^{+0.011}_{-0.009}(syst.))$	0.0732 ± 0.0019
$qq \rightarrow H l \nu, p_T^V < 75 \text{ GeV}$	$0.70^{+0.30}_{-0.27}(^{+0.29}_{-0.26}(stat.)^{+0.06}_{-0.04}(syst.))$	0.215 ± 0.008
$qq \rightarrow H l \nu, 75 \leq p_T^V < 150 \text{ GeV}$	$0.05^{+0.11}_{-0.08}(^{+0.11}_{-0.08}(stat.)^{+0.02}_{-0.01}(syst.))$	0.134 ± 0.005
$qq \rightarrow H l \nu, 150 \le p_T^V < 250 \text{ GeV}$	$0.039^{+0.019}_{-0.018}(\pm 0.013(stat.)^{+0.013}_{-0.012}(syst.))$	0.0412 ± 0.0017
$qq \rightarrow H l\nu, 250 \le p_T^V < 400 \text{ GeV}$	$0.011 \pm 0.004 (^{+0.004}_{-0.003} (stat.) \pm 0.002 (syst.))$	0.0100 ± 0.0004
$qq \rightarrow H l \nu, p_T^V \ge 400 \text{ GeV}$	$0.0033^{+0.0020}_{-0.0018}(^{+0.0017}_{-0.0016}(stat.)^{+0.0011}_{-0.0009}(syst.))$	0.00214 ± 0.00011
$gg/qq \rightarrow H ll, p_T^V < 150 \text{ GeV}$	$0.08 \pm 0.11 (^{+0.09}_{-0.08} (stat.) ^{+0.08}_{-0.07} (syst.))$	0.198 ± 0.007
$gg/qq \rightarrow H ll, 150 \leq p_T^V < 250 \text{ GeV}$	$0.035^{+0.011}_{-0.010}(^{+0.009}_{-0.008}(stat.)^{+0.007}_{-0.006}(syst.))$	0.032 ± 0.004
$gg/qq \rightarrow Hll, 250 \le p_T^V < 400 \text{ GeV}$	$0.0074^{+0.0029}_{-0.0027}(^{+0.0025}_{-0.0024}(stat.)^{+0.0013}_{-0.0012}(syst.))$	0.0072 ± 0.0008
$gg/qq \rightarrow Hll, p_T^V \ge 400 \text{ GeV}$	$0.0004^{+0.0012}_{-0.0011}(^{+0.0010}_{-0.0009}(stat.)^{+0.0007}_{-0.0006}(syst.))$	0.00126 ± 0.00010
$t\bar{t}H, p_T^H < 60 \text{ GeV}$	$0.09^{+0.09}_{-0.08}(^{+0.08}_{-0.07}(stat.)^{+0.04}_{-0.03}(syst.))$	0.118 ± 0.016
$t\bar{t}H, 60 \le p_T^H < 120 \text{ GeV}$	$0.13^{+0.10}_{-0.09}({}^{+0.09}_{-0.08}(stat.) {}^{+0.05}_{-0.04}(syst.))$	0.178 ± 0.020
$t\bar{t}H$, 120 $\leq p_T^H < 200 \text{ GeV}$	$0.05 \pm 0.06 (\pm 0.05 (stat.) \pm 0.03 (syst.))$	0.126 ± 0.015
$t\bar{t}H$, 200 $\leq p_T^H < 300 \text{ GeV}$	$0.052^{+0.030}_{-0.027}(^{+0.026}_{-0.024}(stat.)^{+0.015}_{-0.012}(syst.))$	0.053 ± 0.007
$t\bar{t}H$, 300 $\leq p_T^H < 450 \text{ GeV}$	$0.005^{+0.012}_{-0.011}(\pm 0.010(stat.)\pm 0.006(syst.))$	0.0190 ± 0.0031
$t\bar{t}H, p_T^H \ge 450 \text{ GeV}$	$0.000 \pm 0.008 (^{+0.006}_{-0.005}(stat.) \pm 0.005(syst.))$	0.0054 ± 0.0010
tH	$0.5^{+0.4}_{-0.3}(\pm 0.3(stat.)^{+0.2}_{-0.1}(syst.))$	$0.085^{+0.005}_{-0.011}$

Best-fit values and uncertainties for the cross sections in each measurement region

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Source	Systematic uncertainty on m_H [MeV]
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \rightarrow \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Process	Matrix element	PDF set	UE and PS model	Prediction order
	(alternative)		(alternative model)	for total cross section
ggF H	Powheg Box v2 [18,19,20,21,22]	PDF4LHC15NNLO [54]	PVTHA 8 [65]	$N^{3}I \cap OCD + NI \cap FW$ [21 22 23 24 25 26 27 28 20 40 41]
	NNLOPS [66,18,25]	I DI 4LIICI5NNLO [54]		$N \ LO \ QOD + NLO \ LW \ [51,52,55,54,55,50,57,56,59,40,41]$
	(MG5_AMC@NLO) [42,67]		(Herwig 7) [68]	
VBF H	Powheg Box v2 [66,20,21,22]	PDF4LHC15nlo	Pythia 8	NNLO QCD + NLO EW $[44,45,46]$
	(MG5_AMC@NLO)		(Herwig 7)	
VH excl. $gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Pythia 8	NNLO QCD + NLO EW $[47,48,49,51,52]$
ttH	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NLO [31]
$gg \rightarrow ZH$	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NLO+NLL [50,53]
$qq \rightarrow WW$	Sherpa 2.2.2 [69]	NNPDF3.0nnlo [70]	Sherpa 2.2.2 [71,72,73,74,75,76]	NLO [77,78,79]
	$(Q_{ m cut})$		$(\text{Sherpa } 2.2.2 \ [72,80]; \mu_q)$	
$qq \rightarrow WWqq$	MG5_AMC@NLO [42]	NNPDF3.0NLO	Pythia 8	LO
			(Herwig 7)	
$gg \rightarrow WW/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	LO [81]
$WZ/V\gamma^*/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO [82]
$V\gamma$	Sherpa 2.2.8 [69]	NNPDF3.0nnlo	Sherpa 2.2.8	NLO [82]
VVV	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$t\overline{t}$	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NNLO+NNLL [83,84,85,86,87,88,89]
	(MG5_AMC@NLO)		(Herwig 7)	
Wt	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NNLO [90,91]
	(MG5_AMC@NLO)		(Herwig 7)	
Z/γ^*	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	NNLO [92]
	(MG5_AMC@NLO)			

Category	$N_{\rm jet,(p_T>30~GeV)} = 0 \qquad N_{\rm jet,(p_T>30~GeV)} = 1$		
	Exactly two isolated leptons $(\ell = e, \mu)$ with opposite charge		
	$p_{\rm T}^{\rm lead} > 22 GeV , p_{\rm T}^{\rm sublead} > 15 GeV$		
Pre-Selection	$ \eta_e < 2.5, \eta_\mu < 2.5, p_T^{\text{jet}} > 30 GeV$		
	$m_{\ell\ell} > 10 GeV$		
	$E_{\rm T}^{\rm miss, \ track} > 20 GeV$		
Background rejection	$N_{b\text{-jet},(p_{\mathrm{T}}>20\mathrm{GeV})} = 0$		
	$\Delta \phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2 \qquad \max(m_{\mathrm{T}}^{\ell}) > 50 GeV$		
	$p_{\rm T}^{\ell\ell'} > 30 GeV$ $m_{\tau\tau} < m_Z - 25 GeV$		
	$m_{\rm T} > 80 GeV$		
$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu \qquad \qquad$	$m_{\ell\ell} < 55 GeV$		
topology	$\Delta\phi_{\ell\ell} < 1.8$		

Event selection criteria used to define the signal and fiducial region in the analysis. The reconstructed electrons are required to have a pseudorapidity $|\eta| < 2.47$, excluding the transition region between the barrel and endcaps of the EM calorimeter, $1.37 < |\eta| < 1.52$.

CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0$	$N_{\rm jet,(p_T>30~GeV)}=1$	
	$N_{b\text{-jet},(p_{\mathrm{T}}>20\mathrm{GeV})}=0$		
	$\Delta \phi_{\ell\ell, E_{\rm T}^{\rm miss}} > \pi/2$	$m_{\ell\ell} > 80 GeV$	
$qq \rightarrow WW$	$p_{\mathrm{T}}^{\ell\ell} > 30~GeV$	$ m_{ au au} - m_Z > 25 GeV$	
	$55{<}m_{\ell\ell}{<}110~GeV$	$\max\left(m_{\rm T}^{\ell}\right) > 50 \ GeV$	
	$\Delta \phi_{\ell\ell}{<}2.6$		
	$N_{\rm H}$, $(n_{\rm e}, q_{\rm e}, q_{\rm e}) > 0$	$N_{b\text{-jet},(p_{\mathrm{T}}>30\mathrm{GeV})}=1$	
	1.6 -jet,(20 GeV $< p_{\rm T} < 30$ GeV) > 0	$N_{b\text{-jet},(20 \mathrm{GeV} < p_{\mathrm{T}} < 30 \mathrm{GeV})} = 0$	
$t\bar{t}/Wt$	$\Delta \phi_{\ell\ell, E_{\rm T}^{\rm miss}} > \pi/2$	$m_{\tau\tau}{<}m_Z-25~GeV$	
	$p_{\mathrm{T}}^{\ell\ell} > 30 \; GeV$	$\max\left(m_{\rm T}^\ell\right) > 50 \ GeV$	
	$\Delta \phi_{\ell\ell}{<}2.8$		
	$N_{b\text{-jet},(p_{\mathrm{T}}>)}$	$a_{20 \text{GeV}} = 0$	
	$m_{\ell\ell} < 80 \; GeV$		
$Z/\gamma^* \to \tau \tau$	no $E_{\mathrm{T}}^{\mathrm{miss, \ track}}$ 1	requirement	
	$\Delta \phi_{\ell\ell} > 2.8$	$m_{ au au} > m_Z - 25 \; GeV$	
		$\max\left(m_{\rm T}^{\ell}\right) > 50 \ GeV$	

Background	Normalization factor
$qqWW N_{jet} = 0$	0.97 ± 0.07
$qqWW N_{jet} = 1$	0.91 ± 0.13
$Z + \text{jets } N_{\text{jet}} = 0$	0.91 ± 0.07
$Z + \text{jets } N_{\text{jet}} = 1$	1.02 ± 0.12
Top $N_{\text{jet}} = 0$	1.07 ± 0.24
Top $N_{\rm jet} = 1$	1.03 ± 0.18

Variable	Data Statistical [%]	MC Statistical [%]	Experimental [%]	Theory [%]
$y_{\ell\ell}$	14 - 22	5.3 - 10	6.9 - 15	5.9 - 15
$p_{ ext{T}}^{\ell\ell}$	15 - 29	6.4 - 14	8.2 - 31	6.8 - 27
$p_{\mathrm{T}}^{\ell 0}$	13 - 28	6.3 - 13	9.3 - 28	14 - 34
$\Delta \phi_{\ell\ell}$	11 - 39	6.1 - 18	7.8 - 22	13 - 27
y_{i0}	23 - 51	12 - 26	21 - 54	26 - 58
$\cos heta^*$	11 - 15	5.8 - 7.6	8.5 - 11	8.9 - 14
p_{T}^{H}	8.5 - 72	6.2 - 18	10 - 58	12 - 27
$m_{\ell\ell}$	12 - 25	5.6 - 11	7.5 - 15	7.3 - 20
$y_{\ell\ell}$ vs $N_{\rm jet}$	9.0 - 62	3.9 – 25	8.0 - 20	5.0 - 53
$p_{\rm T}^{\ell\ell}$ vs $N_{\rm jet}$	9.8 - 36	4.7 - 20	12 - 41	9.9 - 50
$p_{\rm T}^{\ell 0}$ vs $N_{\rm jet}$	9.6 - 50	5.8 - 20	10 - 35	9.4 - 74
$\Delta \phi_{\ell\ell} \text{ vs } N_{ ext{jet}}$	9.6 - 65	5.6 - 18	6.8 - 31	14 - 74
$\cos \theta^*$ vs $\dot{N}_{ m iet}$	13 - 50	6.8 - 25	7.7 - 39	8.9 - 58
$m_{\ell\ell} \text{ vs } N_{\text{jet}}$	12 - 152	5.7 - 44	8.9 - 58	7.2 - 82

Simulation Name	Generator	ME Accuracy	PDF	Shower & Hadronization	UE & PS Parameter Set
Powheg+Pythia 8	POWHEG-BOX v2	NLO QCD & EW	NNPDF3.0NLO	Рутніа 8.230	AZNLO
Powheg+Herwig 7	POWHEG-BOX v2	 + approx. NNLO QCD NLO QCD & EW + approx. NNLO OCD 	NNPDF3.0NLO	+EvtGen v1.6.0 Herwig 7.1.3 +EvtGen v1.6.0	H7UE
MG5+Herwig 7	MadGraph5_aMC@NLO	NLO QCD, LO EW	NNPDF30NLO	Herwig 7.1.6	H7UE
VBFNLO@LO	VBFNLO 2.7.1	LO QCD & EW	NNPDF3.0NLO CT14, MMHT14	EvtGen v1.7.0 -	-
VBFNLO@NLO	VBFNLO 2.7.1	NLO QCD & EW	NNPDF3.0NLO	-	-
VBFNLO@LO+Pythia 8	VBFNLO 2.7.1	LO QCD & EW	CT14, MMHT14 NNPDF3.0NLO CT14, MMHT14	Рутніа 8.244 +EvtGen v1.7.0	A14

PRD 108, 072003

Summary of generators used for simulating the signal VBF $H \rightarrow WW^* \rightarrow ev\mu v$ processes

x-sections in VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ PRD 108, 072003

Selection Requirements	Signal Region Fiducial R			
Lepton pair flavors	e-µ	<i>e</i> - <i>µ</i>		
Lepton pair charge	0			
Leading (subleading) lepton $p_{\rm T}$	> 22 GeV (>	> 15 GeV)		
	$ \eta^{\mu} <$	2.5		
Lepton n^{ℓ}	$0 < \eta^e < 1.37$			
	or	$ \eta^{e} < 2.5$		
	$1.52 < \eta^e < 2.47$			
No. of additional leptons	0			
$\Delta R(\ell,\ell)$	overlap removal > 0.1			
$m_{\ell\ell}$	> 10 GeV			
$\Delta R(\ell, \text{jet})$	overlap removal > 0.4			
No. of jets ($p_{\rm T} > 30 \text{ GeV}, \eta < 4.5$)	≥ 2	2		
No. of <i>b</i> -jets ($p_{\rm T} > 20$ GeV, $ \eta < 2.5$)	0			
$m_{\tau\tau}$	$< m_Z - 2$	25 GeV		
Central jet veto ($p_{\rm T} > 20 {\rm GeV}$)	\checkmark			
Outside lepton veto	\checkmark			
m_{jj}	> 450 GeV			
$ \Delta y_{jj} $	> 2.1			
$ \Delta \phi_{\ell \ell} $ <		rad		

Sample	SR	Z/γ^* +jets CR	ggF CR
Signal (Powheg+Pythia 8)	110	13	86
ggF Higgs	39	4	450
Other Higgs	3	10	78
Тор	420	41	11 000
Z/γ^* +jets	79	320	1 400
VV	280	32	4 300
$V\gamma$	13	14	210
Mis-Id	47	12	810
Total Signal+Background	1000 ± 120	450 ± 160	18800 ± 2600
Data	916	406	18 228

	Uncertainty [%]	Uncertainty range [%]				
Source	$\sigma^{ m fid}$	p_{T}^{H}	$p_{\mathrm{T}}^{\ell\ell}, p_{\mathrm{T}}^{\ell_1},$	$m_{\ell\ell}$	$p_{\rm T}^{j_1}, p_{\rm T}^{j_2},$	m_{jj}
		1	$p_{\mathbf{T}}^{\ell_2}, \Delta y_{\ell\ell} ,$		$ \Delta y_{ij} , \Delta \phi_{ij}$	
			$ \Delta \phi_{\ell\ell} , \cos(\theta_{\eta}^*)$			
Signal modeling	5	< 1 – 7	< 1 – 7	< 1 – 19	< 1 - 8	2-7
Signal parton shower	< 1	< 1 – 2	< 1 – 1.8	< 1 – 10	< 1 – 1.8	< 1 – 7
tī modeling	6	1.7 - 30	3 – 13	3 – 80	3 – 10	1.2 - 70
WW modeling	4	< 1 – 12	3 – 11	2 – 90	3 – 10	3 - 40
Z/γ^* +jets modeling	4	< 1 – 19	2 – 18	4 – 30	3 – 13	2 - 50
ggF modeling	5	4.0 - 28	3.4 - 10	2.6 – 12	2.3 - 9.0	1.4 - 86
Mis-Id background	< 1	< 1 – 12	1.1 – 5	< 1 – 19	1 – 3	< 1 – 40
Jets & Pile-up & E _T ^{miss}	5	8 – 60	6 - 30	6 – 120	9 – 30	9 - 130
<i>b</i> -tagging	< 1	< 1 – 9	< 1 – 3	< 1 – 19	1.1 – 3	< 1-40
Leptons	1.5	3 – 17	2 – 9	1.2 – 13	1.7 – 7	< 1 – 16
Luminosity	1.5	1.7 - 2	1.3 – 1.9	< 1 – 4	1.5 - 2	< 1 – 1.9
MC statistics	5	10 - 40	6 – 30	6 – 180	8 - 30	7 – 90
Total systematics	13	19 – 90	13 - 60	12 – 180	15 – 50	15 - 200
Data statistics	20	50 - 160	30 - 110	30 - 400	40 - 100	50 - 300
Total uncertainty	23	50 – 190	40 - 120	30 - 500	40 - 100	50 - 400

x-sections in VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$

Category	$\sigma_{90}^{\gamma\gamma}[GeV]$	S_{90}	B_{90}	$f_{90} \ [\%]$	Z_{90}
U, Central-barrel, high $p_{\rm Tt}^{\gamma\gamma}$	1.88	42	65	39.1	4.7
U, Central-barrel, medium $p_{Tt}^{\gamma\gamma}$	2.34	102	559	15.4	4.2
U, Central-barrel, low $p_{\rm Tt}^{\gamma\gamma}$	2.63	837	13226	6.0	7.2
U, Outer-barrel, high $p_{\text{Tt}}^{\gamma\gamma}$	2.16	31	83	27.4	3.3
U, Outer-barrel, medium $p_{\rm Tt}^{\gamma\gamma}$	2.63	108	981	9.9	3.4
U, Outer-barrel, low $p_{\rm Tt}^{\gamma\gamma}$	3.00	869	22919	3.7	5.7
U, Endcap	3.33	759	29383	2.5	4.4
C, Central-barrel, high $p_{\rm Tt}^{\gamma\gamma}$	2.10	26	44	37.3	3.6
C, Central-barrel, medium $p_{\rm Tt}^{\gamma\gamma}$	2.62	62	389	13.8	3.1
C, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	3.00	508	9726	5.0	5.1
C, Outer-barrel, high $p_{Tt}^{\gamma\gamma}$	2.56	34	103	25.0	3.2
C, Outer-barrel, medium $p_{\text{Tt}}^{\gamma\gamma}$	3.20	114	1353	7.8	3.1
C, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	3.71	914	30121	2.9	5.2
C, Endcap	4.04	1249	52160	2.3	5.5
Inclusive	3.32	5653	128774	4.2	15.6

Source	Impact $[MeV]$
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \rightarrow \gamma$ extrapolation	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

Parabolic dependence of the yield of the $gg \rightarrow (H^* \rightarrow)ZZ$ process on $\mu_{\text{off-shell}}$.

Process	ggF SR	Mixed SR	EW SR
$gg \rightarrow (H^* \rightarrow)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47
$gg \rightarrow ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4
$qq \rightarrow (H^* \rightarrow)ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96
$qq \rightarrow ZZ$	1878 ± 151	135 ± 23	22.0 ± 8.3
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0
Observed	2327	178	50

Process	ggF SR	Mixed SR	EW SR
$gg \rightarrow (H^* \rightarrow)ZZ$	210 ± 53	19.7 ± 4.9	4.29 ± 1.10
$gg \to H^* \to ZZ$	111 ± 26	10.9 ± 2.5	3.26 ± 0.82
$gg \rightarrow ZZ$	251 ± 66	23.4 ± 6.2	5.31 ± 1.46
$qq \to (H^* \to) ZZ + 2j$	14.0 ± 3.0	1.63 ± 0.17	4.46 ± 0.50
$qq \rightarrow ZZ$	1422 ± 112	80.4 ± 11.9	7.74 ± 2.99
WZ	678 ± 54	51.9 ± 6.9	7.89 ± 2.50
Z+jets	62.3 ± 24.3	7.51 ± 6.94	0.62 ± 0.54
Non-resonant- $\ell\ell$	106 ± 39	9.17 ± 2.73	1.55 ± 0.42
Other backgrounds	22.6 ± 5.2	1.62 ± 0.25	1.40 ± 0.10
Total expected (SM)	2515 ± 165	172 ± 17	28.0 ± 4.1
Observed	2496	181	27

 4ℓ

 $2\ell 2\nu$

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 49

Process	Uncertainty	Final State	Value (%)
ggF Signal Region			
$qq \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	4–40
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	21-28
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	22-37
$qq \rightarrow ZZ + 2j$	Parton Shower	$2\ell 2\nu$	1–67
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27
$gg \to H^* \to ZZ$	Parton Shower	$2\ell 2\nu$	8–45
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38
$gg \rightarrow ZZ$	Parton Shower	$2\ell 2\nu$	6–43
WZ + 0j	QCD Scale	$2\ell 2\nu$	1–54
	1-jet Signal Re	gion	
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27
$gg \to H^* \to ZZ$	QCD Scale	$2\ell 2\nu$	13–18
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18-20
$qq \rightarrow ZZ (\mathrm{EW})$	QCD Scale	$2\ell 2\nu$	7–18
	2-jet Signal Re	gion	
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	18–26
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	8-32
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18-20
WZ + 2j	QCD Scale	$2\ell 2\nu$	20-22
$qq \rightarrow ZZ$ Control Regions			
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	26
Three-lepton Control Regions			
WZ + 2j	QCD Scale	$2\ell 2\nu$	28

Martina Javurkova (UMass)

Precision measurements of the Higgs boson with ATLAS

Epiphany 2024 50

Systematic Uncertainty Fixed	$\mu_{\text{off-shell}}$ value at which $-2 \ln \lambda(\mu_{\text{off-shell}}) = 4$
Parton shower uncertainty for $gg \rightarrow ZZ$ (normalisation)	2.26
Parton shower uncertainty for $gg \rightarrow ZZ$ (shape)	2.29
NLO EW uncertainty for $qq \rightarrow ZZ$	2.27
NLO QCD uncertainty for $gg \rightarrow ZZ$	2.29
Parton shower uncertainty for $qq \rightarrow ZZ$ (shape)	2.29
Jet energy scale and resolution uncertainty	2.26
None	2.30

The impact of most important systematic uncertainties on the observed upper value of $\mu_{\text{off-shell}}$ for which $-2 \ln \lambda = 4$, obtained by the combined fit.

Challenges of the off-shell Higgs regime

The signal $gg \rightarrow H^* \rightarrow VV$ process proceeds predominantly through a **top-quark loop**.

- <u>On-shell</u>: top-quark mass is the largest scale in the process and can be **approximated** as infinitely heavy \Rightarrow loop-induced process can be reduced to a tree-level one.
- <u>Off-shell</u>: virtuality of the Higgs boson may be comparable to (or larger than) the topquark mass \Rightarrow the **impact of top quarks** in the loops cannot be neglected.
 - LO prediction requires the computation of a one-loop amplitude with the full top mass dependence, while the NLO correction requires a two-loop amplitude calculation.
 - Contribution from both massless and massive quarks circulating in the loops should be considered in the background $gg \rightarrow VV$ amplitude computation.
 - Sizeable destructive interference effects between the signal and the background process ⇒must be taken into account.

Off-shell Higgs: 4ℓ final state strategy

Final state decay objects (e and μ) can be fully reconstructed.

• Signal regions defined as $m_{4\ell} > 220$ GeV, designed to target the EW (VBF+VH) and ggF productions.

EW SR $(n_{\text{jets}} \ge 2 \text{ and } |\Delta \eta_{jj}| > 4.0)$ and **Mixed SR** $(n_{\text{jets}} = 1 \text{ and } \eta_j > 2.2)$

▶ggF SR: remaining events

• Observables: NN methods trained with kinematic variables and ME discriminants sensitive to the signal.

Off-shell Higgs: 4ℓ final state strategy

Final state decay objects (*e* and μ) can be fully reconstructed.

Signal regions defined as $m_{4\ell} > 220$ GeV, designed to target the **EW** (VBF+VH) and **ggF** productions.

EW SR $(n_{\text{iets}} \ge 2 \text{ and } |\Delta \eta_{ii}| > 4.0)$ and **Mixed SR** $(n_{\text{iets}} = 1 \text{ and } \eta_i > 2.2)$

▶ggF SR: remaining events

• Observables: NN methods trained with kinematic variables and ME discriminants sensitive to the signal.

 \Rightarrow Good job of enhancing S/Exp. at higher values

*Also used for Mixed SR

Off-shell Higgs: $2\ell 2\nu$ final state strategy PLB 846 (2023) 138223

 \blacktriangleright Six times larger branching ratio (compared to the 4ℓ final state).

• Signal regions defined as $m_{4\ell} > 220$ GeV, designed to target the EW (VBF+VH) and ggF productions.

EW SR $(n_{\text{iets}} \ge 2 \text{ and } |\Delta \eta_{ii}| > 4.0)$ and **Mixed SR** $(n_{\text{iets}} = 1 \text{ and } \eta_i > 2.2)$

▶ggF SR: remaining events

• Observables: NN methods trained with kinematic variables and ME discriminants sensitive to the signal.

Off-shell Higgs: $2\ell 2\nu$ final state strategy PLB 846 (2023) 138223

 \blacktriangleright Six times larger branching ratio (compared to the 4ℓ final state).

Signal regions defined as $m_{4\ell} > 220$ GeV, designed to target the **EW** (VBF+VH) and **ggF** productions.

EW SR $(n_{\text{iets}} \ge 2 \text{ and } |\Delta \eta_{ii}| > 4.0)$ and **Mixed SR** $(n_{\text{iets}} = 1 \text{ and } \eta_i > 2.2)$

▶ggF SR: remaining events

• **Observables**: transverse mass of the ZZ system ($m_{\rm T}^{\rm ZZ}$)

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

 \Rightarrow Good job of enhancing S/Exp.

Off-shell Higgs: MC modelling and bkg normalization PLB 846 (2023) 138223

Signal and background modelling

- ► $gg \rightarrow (H^* \rightarrow)ZZ$: Sherpa 2.2.2 + 0,1j@LO + QCD NLO/LO K-factors + N3LO/NLO flat K-factor of 1.32
- $qq \rightarrow (H^* \rightarrow)ZZ + 2j$: MadGraph5 @LO
- $q\bar{q} \rightarrow ZZ$: Sherpa 2.2.2 + 0,1j@NLO +2,3j@LO + EW NLO corrections for 41, 212v
- ► WZ: <u>Sherpa 2.2.1</u> + 0,1j@NLO +2,3j@LO

Normalizations of the main background sources determined by data

• Dedicated **control regions** introduced to constrain each of the data-driven normalization factors.

• 4ℓ and $2\ell 2\nu$ channels: qqZZ (dominant background in all SRs)

▶ Constrained using three 4ℓ CRs: $180 < m_{4\ell} < 220$ GeV, $N_{\rm jet} = 0/1/ \ge 2$

• $2\ell^2\nu$ channel: WZ, Z + jets and non-resonant $\ell\ell$ production (mostly $t\bar{t}$ and WW)