

Search for Hidden Valley at future colliders

Marcin Kucharczyk (on behalf of CLICdp collaboration) IFJ PAN Kraków Epiphany 2024 Kraków 08.01 - 12.01 2024

Outline

- Physics motivation
- Compact Linear Collider
- Analysis strategy
- Sensitivity
- Upper limits

Analysis partially supported by Prof. Jadach's grant NCN 2015/18/M/ST2/00123

Hidden sector – generic possibility for NP

Consequence of string-theory

- \rightarrow additional gauge sectors may be introduced to SM, SUSY, TeV-ED
 - hidden sector "v-sector"
 - communicator interacts with both sectors

BARRIER

communicator's high mass, weak couplings, small mixing angles, ...

- \rightarrow weakens interaction between sectors
- \rightarrow production of new particles rare at low energy

SM group G_{SM} extended with non-abelian group G_v

- \rightarrow all SM particles neutral within G_v
- \rightarrow if energy sufficient \rightarrow *v***-particle** charged within G_v , neutral under G_{SM}

At TeV scale high dimension operators (Z', Higgs) make possible $SM \leftrightarrow v$ -particles interactions

Direct production and SM Higgs

• SM Higgs may decay into 2 v-particles, each decaying to bb(bar)

- scalar decaying to the heaviest particles it has access to in order to defeat natural helicity suppression

Phys. Lett. B651 (2007) 374

- Direct multi- π_v production

- π_v^0 and π_v^{\pm} are **electrically neutral!**
- *v*-quark production results in multiple *v*-hadron production with ratio $m(Z')/\Lambda_v$ (*v*-confinement scale)

LOOKING FOR: long-lived particles (LLP's)

if lifetime between 1 ps and 1 ns (characteristic for weak decays) *can be identified in tracking systems by displaced vertices!*

09-01-2024

Marcin Kucharczyk, Epiphany 2024

[LCD-Note-2011-002]

TURN ABOUND

4

Compact Linear Collider

- Electron-positron linear collider at CERN for the era beyond HL-LHC
- Planned for construction in three energy stages:
 - \rightarrow 350 GeV (Higgs/top)
 - \rightarrow 1.5 TeV (expanding Higgs/top)
 - \rightarrow 3 TeV (energy frontier)
- Nominal physics program lasts for 25-30 years
- Benefit of linear machine:
 - \rightarrow length/energy staging plan
 - \rightarrow can be updated in response to developing physics landscape

DRIVE BEAM LOOPS

- Novel and unique two-beam accelerating technique with highgradient room temperature RF cavities
 - ~11km in its initial phase

C+ INJECTION DESCENT TUNNEL

e- INJECTION DESCENT TUNNEL

SM Higgs decay into 2 Hidden Valley pions

[MK, M. Goncerz, JHEP 03 (2023) 131]

$$H \rightarrow \pi_{\rm v}^0 \pi_{\rm v}^0 \rightarrow b \bar{b} b \bar{b}$$

Analysis for two energy stages:

- √*s* = 350 GeV
 - \rightarrow dominant production in Higgsstrahlung ($e^+e^- \rightarrow Z H$)
 - \rightarrow assumed integrated luminosity = 1 ab⁻¹
- √*s* = 3 TeV
 - \rightarrow dominant production in WW-fusion
 - \rightarrow assumed integrated luminosity = 3 ab⁻¹

Generation / simulation

- WHIZARD 1.95 + PYTHIA 6.4
- interaction with CLIC_ILD
 - \rightarrow Geant4 + MOKKA

Signal & background samples

[MK, M. Goncerz, JHEP 03 (2023) 131]

		$\sqrt{s} = 350 \text{ GeV}$			$\sqrt{s} = 3 \text{ TeV}$			
$m_{\pi_v^0} [\mathrm{GeV/c^2}]$	$ au_{\pi_{ m v}^0}[m ps]$	$\sigma[\mathrm{pb}]$	sample size	Eff. ^{$presel.$} [%]	$\sigma[\mathrm{pb}]$	sample size	Eff. ^{$presel.$} [%]	
25	1	0.93	$\sim\!240\mathrm{K}$	78	0.42	$\sim\!200{\rm K}$	68	
25	10	0.93	$\sim\!240\mathrm{K}$	94	0.42	$\sim\!200{\rm K}$	86	Eff. ^{presel.} • ≥ 2 DVs • <i>b</i> -tag prob. > 0.95
25	100	0.93	$\sim\!240\mathrm{K}$	99	0.42	$\sim\!200\mathrm{K}$	93	
25	300	0.93	$\sim\!240\mathrm{K}$	97	0.42	$\sim\!200\mathrm{K}$	80	
35	1	0.93	$\sim\!240\mathrm{K}$	76	0.42	$\sim\!200\mathrm{K}$	70	
35	10	0.93	$\sim\!240\mathrm{K}$	93	0.42	$\sim\!200\mathrm{K}$	86	
35	100	0.93	$\sim\!240\mathrm{K}$	99	0.42	$\sim\!200\mathrm{K}$	94	
35	300	0.93	$\sim\!240\mathrm{K}$	98	0.42	$\sim\!200\mathrm{K}$	82	
50	1	0.93	$\sim\!240\mathrm{K}$	72	0.42	$\sim\!200\mathrm{K}$	72	
50	10	0.93	$\sim\!240\mathrm{K}$	89	0.42	$\sim\!200\mathrm{K}$	89	
50	100	0.93	$\sim\!240\mathrm{K}$	99	0.42	$\sim\!200\mathrm{K}$	90	
50	300	0.93	$\sim\!240\mathrm{K}$	99	0.42	$\sim\!200\mathrm{K}$	86	
$q \bar{q}$		24.41	$\sim 2 {\rm M}$	12	2.95	$\sim\!200\mathrm{K}$	6	
${ m q}ar{ m q} uar{ u}$		0.32	$\sim 306 {\rm K}$	12	1.32	$\sim\!200\mathrm{K}$	8	
${ m q} {ar q} { m q} {ar q}$		5.85	$\sim\!1.44\mathrm{M}$	8	0.55	$\sim 750 {\rm K}$	9	
${ m q} {ar q} { m q} {ar q} {ar u} {ar u}$					0.07	$\sim 300 {\rm K}$	11	
$t\bar{t}$		0.45	$\sim\!241\mathrm{K}$	12				
WWZ		0.01	$\sim 40 {\rm K}$	14				

- for every signal sample x-section of 0.93 pb (\sqrt{s} = 350 GeV) and 0.42 pb (\sqrt{s} = 3 TeV) with BR($n_v \rightarrow bb(bar)$) = 100%
- in each case samples without pileup of $\gamma\gamma \rightarrow$ hadrons were also produced

Hidden Valley pions

v-particles have non-zero lifetime

- \rightarrow analysis based on reconstruction of SV's "far" from PV and beam axis
- \rightarrow displaced vertices (DV) more PV-like

Jet reconstruction and tagging

[MK, T. Wojtoń, CLICdp-Note-2018-001]

- *k_t* algorithm (*FastJet*)
- b-tag and c-tag probability found through a Boosted Decision Tree based procedure
- R(=1.0) parameter optimized by looking at RMS/Mean of the di-jet and four-jet mass

assign two b-jets to a single displaced vertex

 \rightarrow nr of common charged particles jet-DV is max. (second max.)

Displaced vertex reconstruction

[MK, M. Goncerz, JHEP 03 (2023) 131]

Displaced vertices are rather PV-like objects

- accumulate as many tracks as possible from Hidden Valley pions
- nr of tracks > 4 \rightarrow eliminate background from b-hadrons

Dedicated two step procedure to reconstruct DV's

- (1) seeding: search for space points with accumulation of tracks
- (2) fitting: weighted least-square
- \rightarrow developed and optimised for the Hidden Valley

Multi-variate analysis

[MK, M. Goncerz, JHEP 03 (2023) 131]

Multi-variate analysis for events with at least 2 DV's

- \rightarrow 7 variables with good separation of signal wrt background ($m_n = 25, 35, 50 \text{ GeV}$)
- 1) nr of tracks assigned to DV
- 2) DV multiplicity in the event
- 3) DV invariant mass
- 4) mass of di-jet assigned to the DV
- 5) mass of four-jet assigned to 2 DVs

if reconstruct events with 4 jets

6) $\log(y_{n-1,n})$ - distance at which transition from three-jet event to two-jet event takes place \rightarrow effective against backgrounds with 2 or 3 jets

if reconstruct events with 2 jets

7) $\log(y_{n+1,n})$ - distance at which transition from four-jet event to three-jet event takes place \rightarrow effective against backgrounds with 3 or 4 jets

only for $\sqrt{s} = 350 \text{ GeV}$

8) Z invariant mass

Separation

Separation

[MK, M. Goncerz, JHEP 03 (2023) 131]

Marcin Kucharczyk, Epiphany 2024

BDT response

[MK, M. Goncerz, JHEP 03 (2023) 131]

Sensitivity: $\sqrt{s} = 350 \text{ GeV}$

[MK, M. Goncerz, JHEP 03 (2023) 131]

Sensitivity S / $\sqrt{(S + B)}$ as a function of the cut on BDTG response

 \rightarrow to optimize the cut on BDTG discriminator

Sensitivity: $\sqrt{s} = 3$ TeV

Sensitivity S / $\sqrt{(S + B)}$ as a function of the cut on BDTG response

 \rightarrow to optimize the cut on BDTG discriminator

Upper limits

[MK, M. Goncerz, JHEP 03 (2023) 131]

Upper limits on x-section × BF at 95% CL for using CLs (cut on BDTG > 0.95)

- \rightarrow direct comparison to *pp* results not straightforward
- → much better limits as compared to ATLAS, CMS and LHCb results (even after upgrades planned for HL-LHC)

expected upper limits obtained in the absence of signal observation

Upper limits

Upper limits normalized to the Standard Model production cross-section of the Higgs boson

expected upper limits obtained in the absence of signal observation

Systematics

[MK, M. Goncerz, JHEP 03 (2023) 131]

Main purpose of analysis \rightarrow estimate the sensitivities and upper limits

- main limitation dominated by the statistics rather than systematics
- total luminosity expected to be measured at the level of a few permille at CLIC
- estimation of systematics related to reconstruction not meaningful now
 - \rightarrow final detector configuration not yet fully established
- initial studies of systematics
 - \rightarrow leading contribution identified as related to secondary vertices originating from detector material
 - \rightarrow minor influence on the results

Conclusions

- Hidden sector: generic possibility for BSM physics
- Sensitivity of CLIC_ILD detector model to long-lived particles from Higgs decays for 350 GeV and 3 TeV
 - \rightarrow respective integrated lumi. of 1 ab^{-1} and 3 ab^{-1}
- Signal samples for 4 different HV pion lifetimes and 3 different masses
- Analysis based on displaced vertices assigned to *b*-jets
- Expected upper limits in absence of signal much more stringent compared to currently operating detectors
- Ongoing analysis for FCCee (356 GeV) with CLIC-like detector model

 \rightarrow not published yet