QCD evolution equations and splitting functions

Sven-Olaf Moch

Universität Hamburg

Universität Hamburg

European Research Council Established by the European Commission

Based on work done in collaboration with:

- Additional moments and x-space approximations of four-loop splitting functions in QCD
 S. M., B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt arXiv:2310.05744
- The double fermionic contribution to the four-loop quark-to-gluon splitting function F. Herzog, G. Falcioni, S. M., J. Vermaseren and A. Vogt arXiv:2310.01245
- Four-loop splitting functions in QCD The gluon-to-quark case –
 F. Herzog, G. Falcioni, S. M., and A. Vogt arXiv:2307.04158
- Four-loop splitting functions in QCD The quark-quark case –
 F. Herzog, G. Falcioni, S. M., and A. Vogt arXiv:2302.07593
- Low moments of the four-loop splitting functions in QCD
 S. M., B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt arXiv:2111.15561
- On quartic colour factors in splitting functions and the gluon cusp anomalous dimension
 S. M., B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt arXiv:1805.09638
- Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond
 S. M., B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt arXiv:1707.08315
- Many more papers of MVV and friends ...
 2001 ...

QCD evolution at 1% precision

Parton evolution

Feynman diagrams in leading order

Proton in resolution $1/Q \longrightarrow$ sensitive to lower momentum partons

- Evolution equations for parton distributions f_i
 - predictions from fits to reference processes (universality)

$$\frac{d}{d\ln\mu^2} f_{\rm i}(x,\mu^2) = \sum_{\rm j} \left[P_{\rm ij}(\alpha_s(\mu^2)) \otimes f_{\rm j}(\mu^2) \right](x)$$

Splitting functions P up to N³LO (work in progress) $P_{ij} = \alpha_s P_{ij}^{(0)} + \alpha_s^2 P_{ij}^{(1)} + \alpha_s^3 P_{ij}^{(2)} + \alpha_s^4 P_{ij}^{(3)} + \dots$

NNLO: standard approximation

Non-singlet

Operator matrix elements

- Quark operator of spin-*N* and twist two $O_{q}^{\{\mu_{1},...,\mu_{N}\}} = \overline{\psi} \gamma^{\{\mu_{1}} D^{\mu_{2}} \dots D^{\mu_{N}\}} \psi$
- N covariant derivatives $D_{\mu,ij} = \partial_{\mu} \delta_{ij} + ig_s (t_a)_{ij} A^a_{\mu}$

sandwiched between quark fields $\psi, \overline{\psi}$

• Evaluation of operators in matrix elements A_{qq} with external quark states

$$A_{qq}^{\{\mu_1,...,\mu_N\}} = \langle \psi(p_1) | O_q^{\{\mu_1,...,\mu_N\}}(p_3) | \overline{\psi}(p_2) \rangle$$

• Anomalous dimensions $\gamma(\alpha_s, N)$ govern scale dependence of renormalized operators

$$\frac{d}{d\ln\mu^2}O^{\rm ren} = -\gamma \ O^{\rm ren} \qquad \gamma(N) = -\int_0^1 dx \, x^{N-1} P(x)$$

 Zero-momentum transfer through operator reduces problem to computation of propagator-type diagrams

One-loop computation

• Computation of loop integral in $D = 4 - 2\epsilon$ dimensions and expansion in ϵ

• anomalous dimension $\gamma(N)$ from ultraviolet divergence

$$\begin{aligned} \Delta_{\mu_1} \dots \Delta_{\mu_N} \langle \psi(p_1) | O_q^{\{\mu_1, \dots, \mu_N\}}(0) | \overline{\psi}(-p_1) \rangle &= \\ &= 1 + \frac{\alpha_s}{4\pi} \frac{1}{\epsilon} \gamma^{(0)}(N) + \mathcal{O}(\alpha_s \epsilon^0) + \mathcal{O}(\alpha_s^2) \\ &= 1 + \frac{\alpha_s}{4\pi} \frac{1}{\epsilon} \left\{ C_F \left(4S_1(N) + \frac{2}{N+1} - \frac{2}{N} - 3 \right) \right\} + \mathcal{O}(\alpha_s \epsilon^0) + \mathcal{O}(\alpha_s^2) \end{aligned}$$

- One-loop result with harmonic sum $S_1(N) = \sum_{i=1}^{N} \frac{1}{i}$
- Image: State State

Details in The Theory of Quark and Gluon Interactions
 F.J. Yndurain

Four-loop computation

- Feynman diagrams for operator matrix elements generated up to four loops with Qgraf Nogueira '91
- Parametric reduction of four-loop massless propagator diagrams with integration-by-parts identities encoded in Forcer Ruijl, Ueda, Vermaseren '17
- Symbolic manipulations with Form Vermaseren '00; Kuipers, Ueda, Vermaseren, Vollinga '12 and multi-threaded version TForm Tentyukov, Vermaseren '07
- Diagrams of same topology and color factor combined to meta diagrams
- Non-singlet anomalous dimension
 - 1 one-, 7 two-, 53 three- and 650 four-loop meta diagrams for $\gamma_{
 m ns}^{\,\pm}$
 - 1 three- and 29 four-loop meta diagrams for $\gamma_{
 m ns}^{
 m s}$

Fixed Mellin moments

- Computation of anomalous dimensions $\gamma(N)$ for Mellin moments mostly up to N = 18
 - sometimes higher for complicated topologies (N = 19, N = 20, ...)
 - much higher for "easy" topologies, e.g., n_f -dependent ($N \simeq 80, ...$)

Four-loop non-singlet splitting functions

Analytic results

- contributions to non-singlet splitting functions
 - n_f^3 terms Gracey '94
 - n_f^2 terms Davies, Vogt, Ruijl, Ueda, Vermaseren '16;

Gehrmann, von Manteuffel, Sotnikov, Yang '23

- leading n_c terms S.M., Vogt, Ruijl, Ueda, Vermaseren '17
- $n_f C_F^3$ terms Gehrmann, von Manteuffel, Sotnikov, Yang '23

Scale stability of evolution

Singlet

Operator product expansion (I)

Optical theorem

- Total cross section related to imaginary part of Compton amplitude
 - momentum transfer $Q^2 = -q^2$
 - Bjorken variable $x = Q^2/(2p \cdot q)$

• Optical theorem relates hadronic tensor $W_{\mu\nu}$ to imaginary part of Compton amplitude $T_{\mu\nu}$

$$W_{\mu\nu} = e_{\mu\nu} \frac{1}{2x} F_L(x, Q^2) + d_{\mu\nu} \frac{1}{2x} F_2(x, Q^2) + i\epsilon_{\mu\nu\alpha\beta} \frac{p^{\alpha}q^{\beta}}{p \cdot q} F_3(x, Q^2)$$

• OPE of $T_{\mu\nu}$ for short distances $z^2 \simeq 0$ in Bjorken limit $Q^2 \rightarrow \infty$, x fixed Wilson '72; Christ, Hasslacher, Mueller '72

$$T_{\mu\nu} = i \int d^4 z \, \mathrm{e}^{\mathrm{i}q \cdot z} \langle \mathrm{P} | T \left(j^{\dagger}_{\mu}(z) j_{\nu}(0) \right) | \mathrm{P} \rangle$$

Operator product expansion (II)

• Operator product expansion with coefficient functions in Mellin space $C_{a,i}^N$

$$T_{\mu\nu} = \sum_{N,j} \left(\frac{1}{2x}\right)^{N} \left[e_{\mu\nu} C_{L,j}^{N} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\right) + d_{\mu\nu} C_{2,j}^{N} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\right) + i\epsilon_{\mu\nu\alpha\beta} \frac{p^{\alpha}q^{\beta}}{p \cdot q} C_{3,j}^{N} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\right) \right] A_{\mathrm{P},N}^{j} \left(\mu^{2}\right) + \text{ higher twists}$$

- Operator matrix elements $A_{P,N}^i = \langle P | O_i^N | P \rangle$ in nucleon state
 - leading twist physical partonic operators, e.g., quark operator $O_{q}^{\{\mu_{1},...,\mu_{N}\}} = \overline{\psi} \gamma^{\{\mu_{1}} D^{\mu_{2}} \dots D^{\mu_{N}\}} \psi$
- Compton amplitude $T_{\mu\nu}$ for parton states yields coefficient functions and anomalous dimensions $\gamma(\alpha_s, N)$ after mass factorization
 - established computational approach through four loops one loop Buras '80; two loops Kazakov, Kotikov '90; S.M., Vermaseren '99 three loops S.M., Vermaseren, Vogt '04; four loops Davies, Vogt, Ruijl, Ueda, Vermaseren '17; S.M., Ruijl, Ueda, Vermaseren, Vogt to appear
 - photon-DIS $\longrightarrow \gamma_{qq}, \gamma_{qg}$, Higgs (scalar)-DIS $\longrightarrow \gamma_{gq}, \gamma_{gg}$
 - graviton-DIS $\longrightarrow \Delta \gamma_{ij}$ (polarized quantities) S.M., Vermaseren, Vogt '14

Four-loop singlet Mellin moments

Lower row splitting functions

S. M., Ruijl, Ueda, Vermaseren, Vogt '23

• $P_{gq}^{(3)}(x)$ (left) and $P_{gg}^{(3)}(x)$ (right)

Scale stability of evolution (I)

• Right: Contribution to evolution kernel $d \ln q_s / d \ln \mu_f^2$ at NLO, NNLO and N³LO for typical gluon shape

$$xg(x,\mu_0^2) = 1.6 x^{-0.3} (1-x)^{4.5} (1-0.6 x^{0.3})$$

Scale stability of evolution (II)

• Right: Contribution to evolution kernel $d \ln q_s / d \ln \mu_f^2$ at NLO, NNLO and N³LO for typical gluon shape

 $xg(x,\mu_0^2) = 1.6 x^{-0.3} (1-x)^{4.5} (1-0.6 x^{0.3})$

Operator matrix elements

Scalar singlet operators of spin-N and twist two from contraction with light-like vector Δ_{μ}

$$O_{\rm q} = \overline{\psi} \not\Delta D^{N-2} \psi$$

$$O_{\rm g} = F_{\nu}^{\ a} D_{ab}^{N-2} F^{\nu;b}$$

notation

 $F^{\mu;a} = \Delta_{\nu} F^{\mu\nu;a}, \quad A^{a} = \Delta_{\mu} A^{\mu;a},$ $D = \Delta_{\mu} D^{\mu}, \quad \partial = \Delta_{\mu} \partial^{\mu}$

- Physical operators mix under renormalization with other operators (equation-of-motion operators and ghost operators)
 - classic work on general theory of renormalization

Dixon, Taylor '74; Kluberg-Stern, Zuber '75; Joglekar, Lee '76

- Applications in QCD
 - at two loops Floratos, Ross, Sachrajda '79 and with correct renormalization of gluon operator in covariant gauge Hamberg, van Neerven '92; Matiounine, Smith, van Neerven '98; Blümlein, Marquard, Schneider, Schönwald '22
 - at three loops Gehrmann, von Manteuffel, Yang '23
 - general procedure (based on BRST invariance) Falcioni, Herzog '22

Alien operators

• Sets of alien operators $O_A^i = O_q^i + O_g^i + O_c^i$ with $i = I, II, \dots$

$$O_{q}^{I} = \eta g \overline{\psi} \bigtriangleup t^{a} \psi \left(\partial^{N-2} A_{a}\right),$$

$$O_{g}^{I} = \eta (D.F)^{a} \left(\partial^{N-2} A_{a}\right),$$

$$O_{c}^{I} = -\eta (\partial \overline{c}^{a}) \left(\partial^{N-1} c_{a}\right),$$

$$O_{q}^{II} = g^{2} \overline{\psi} \bigtriangleup t_{a} \psi \sum_{i+j=N-3} \kappa_{ij} f^{abc} \left(\partial^{i} A_{b}\right) \left(\partial^{j} A_{c}\right),$$

$$O_{g}^{II} = g (D.F)_{a} \sum_{i+j=N-3} \kappa_{ij} f^{abc} \left(\partial^{i} A_{b}\right) \left(\partial^{j} A_{c}\right),$$

$$O_{c}^{II} = -g \sum_{i+j=N-3} \eta_{ij} f^{abc} (\partial \overline{c}_{a}) \left(\partial^{i} A_{b}\right) \left(\partial^{j+1} c\right)$$

- Class O_A^I alien operators with coupling η (function of N and α_s)
- Class O_A^{II} alien operators with couplings η_{ij} and κ_{ij}
 - constraints from (anti-)BRST symmetry Falcioni, Herzog '22
- Class O_A^{III} , O_A^{IV} , etc alien operators with additional polynomials $(\partial^i A_a)$

Renormalization

- Physical operators $O_{\rm q}$ and $O_{\rm g}$
- Alien operators $O_A^{\,i} = O_{
 m q}^{\,i} + O_{
 m g}^{\,i} + O_{
 m c}^{\,i}$
 - gluon and quark equation-of-motion operators and ghost operators

$$\begin{pmatrix} O_{q} \\ O_{g} \\ O_{A} \end{pmatrix} = \begin{pmatrix} Z_{qq} & Z_{qg} & Z_{qA} \\ Z_{gq} & Z_{gg} & Z_{gA} \\ Z_{Aq} & Z_{Ag} & Z_{AA} \end{pmatrix} \begin{pmatrix} O_{q}^{ren} \\ O_{g}^{ren} \\ O_{A}^{ren} \end{pmatrix}$$

Multiplicative renormalization of operators (Z-factors)

$$\mu^{2} \frac{d}{d\mu^{2}} Z_{ij} = \left(\beta(\alpha_{s}) \frac{\partial}{\partial \alpha_{s}} + \gamma_{3} \xi \frac{\partial}{\partial \xi}\right) Z_{ij} = -\gamma_{ik} Z_{kj}$$

- gauge parameter ξ with $\xi = 1$ for Feynman gauge
- QCD β-function and gluon anomalous dimension γ₃ (known to five loops) Baikov, Chetyrkin, Kühn '17; Herzog, Ruijl, Ueda, Vermaseren, Vogt '17; Luthe, Maier, Marquard, Schröder '17; Chetyrkin, Falcioni, Herzog, Vermaseren '17
- Z_{ij} involving alien operators can be gauge dependent
- Z_{Aq} and Z_{Ag} have to vanish (alien operators cannot mix into set of physical operators)

Moments of pure-singlet splitting function

• Moments N = 2, ... 20 for pure-singlet anomalous dimension $\gamma_{ps}^{(3)}(N)$ $\gamma_{ps}^{(3)}(N=2) = -691.5937093 n_f + 84.77398149 n_f^2 + 4.466956849 n_f^3,$ $\gamma_{ps}^{(3)}(N=4) = -109.3302335 n_f + 8.776885259 n_f^2 + 0.306077137 n_f^3,$ $\gamma_{ps}^{(3)}(N=6) = -46.03061374 n_f + 4.744075766 n_f^2 + 0.042548957 n_f^3,$ \dots $\gamma_{ps}^{(3)}(N=20) = -0.442681568 n_f + 0.805745333 n_f^2 - 0.020918264 n_f^3.$

- Results $N \le 8$ agree with inclusive DIS S.M., Ruijl, Ueda, Vermaseren, Vogt '21 (also for N = 10 and N = 12)
- Quartic color terms $d_R^{abcd} d_R^{abcd}$ agree with S.M., Ruijl, Ueda, Vermaseren, Vogt '18
- Large- n_f parts agree with all-N results Davies, Vogt, Ruijl, Ueda, Vermaseren '17;
- ζ_4 terms in $\gamma_{ps}^{(3)}(N)$ agree with Davies, Vogt '17 based on no- π^2 theorem Jamin, Miravitllas '18; Baikov, Chetyrkin '18
- Renormalization constants involving alien operators (required to three loops) agree with Gehrmann, von Manteuffel, Yang '23
- Checked by n_f^2 terms at all-N Gehrmann, von Manteuffel, Sotnikov, Yang '23

Approximations in *x*-space

- Large- and small-x information about four-loop splitting function $P_{\rm ps}^{(3)}(x)$
 - leading logarithm $(\ln^2 x)/x$ Catani, Hautmann '94
 - sub-dominant logarithms $\ln^k x$ with k=6,5,4 Davies, Kom, S.M., Vogt '22
 - leading large-x terms $(1-x)^j \ln^k (1-x)$ with $j \ge 1$ and $k \le 4$ with k = 4, 3 known Soar, S.M., Vermaseren, Vogt '09
- Approximation of four-loop splitting function $P_{\rm ps}^{(3)}(x)$ with suitable ansatz
 - unknown leading small-x terms: $(\ln x)/x$, 1/x
 - unknown sub-dominant logarithms: $\ln^k x$ with k = 3, 2, 1
 - two remaining large-x terms $(1-x)\ln^k(1-x)$ with k=2,1
 - different two-parameter polynomials together one function (dilogarithm $\text{Li}_2(x)$ or $\ln^k(1-x)$ with k=2,1, suppressed as $x \to 1$)

Pure-singlet splitting function

• Approximations to pure-singlet splitting function $P_{ps}^{(n)}(x)$ at $n_f = 4$ with 80 trial functions

- left: three-loops (n = 2) with comparison to known result
- right: three-loops (n = 3) with remaining uncertainty

Pure-singlet splitting function

- Left: NLO, NNLO and N³LO approximations for $P_{\rm ps}(x)$ with $\alpha_s = 0.2$ fixed and $n_f = 4$
- Right: Contribution to evolution kernel $d \ln q_s / d \ln \mu_f^2$ at NLO, NNLO and N³LO for typical quark-singlet shape

 $xq_{s}(x,\mu_{0}^{2}) = 0.6 x^{-0.3} (1-x)^{3.5} (1+5.0 x^{0.8})$

Moments of quark-gluon splitting function

• Moments N = 2, ... 20 for quark-gluon anomalous dimension $\gamma_{qg}^{(3)}(N)$

$$\begin{split} \gamma_{\rm qg}^{(3)}(N=2) &= -654.4627782\,n_f + 245.6106197\,n_f^2 - 0.924990969\,n_f^3\,,\\ \gamma_{\rm qg}^{(3)}(N=4) &= 290.3110686\,n_f - 76.51672403\,n_f^2 - 4.911625629\,n_f^3\,,\\ \gamma_{\rm qg}^{(3)}(N=6) &= 335.8008046\,n_f - 124.5710225\,n_f^2 - 4.193871425\,n_f^3\,,\\ \gamma_{\rm qg}^{(3)}(N=8) &= 294.5876830\,n_f - 135.3767647\,n_f^2 - 3.609775642\,n_f^3\,,\\ \dots \end{split}$$

 $\gamma_{qg}^{(3)}(N=20) = 52.24329555 n_f - 109.3424891 n_f^2 - 2.153153725 n_f^3.$

• Approximation of four-loop splitting function $P_{qg}^{(3)}(x)$ again with known large- and small-x information and suitable ansatz

Quark-gluon splitting function

- Left: NLO, NNLO and N³LO approximations for $P_{qg}(x)$ with $\alpha_s = 0.2$ fixed and $n_f = 4$
- Right: Contribution to evolution kernel $d \ln q_s / d \ln \mu_f^2$ at NLO, NNLO and N³LO for typical gluon shape

 $xg(x,\mu_0^2) = 1.6 x^{-0.3} (1-x)^{4.5} (1-0.6 x^{0.3})$

Summary

- Experimental precision of $\lesssim 1\%$ motivates computations at higher order in perturbative QCD
 - theoretical predictions at NNLO in QCD nowadays standard
- Push for theory results at N³LO and N⁴LO
 - evolutions equations expected to achieve percent-level
 - massive use of computer algebra
- Four-loop splitting functions approximated from moments $N = 2, \dots 20$
 - residual uncertainties negligible in wide kinematic range of x probed at current and future colliders
 - $P_{\rm qq} = P_{\rm ns}^+ + P_{\rm ps}$ and $P_{\rm qg}$ done
 - P_{gq} and P_{gg} first glimpse, more precise results to come
 - n_f^2 terms for P_{gq} already done at all N