Anomalies and Precisions : Latest CMS B-physics highlights

Alibordi Muhammad

On behalf of the CMS collaboration

XXX Crakow EPIPHANY Conference on Precision Physics at High Energy Colliders

January 8-12, 2024

A T >>

Content to be delivered

- 1. Current status of CMS
- 2. Anomaly and precision of CMS B-physics in the context of larger aspect of physics
- 3. Analysis :
 - Spectroscopy

 $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ - Phys. Rev. Lett. 131 (2023) 091903 : (NEW) $B_s^0 \rightarrow \mu^+ \mu^-$ properties - Phys. Lett. B 842 (2023) 137955

Lepton flavor violation

 $\begin{array}{l} \tau \rightarrow 3\mu \text{ - arXiv:2312.02371[hep-ex] : (NEW)} \\ R(J/\psi) : B_c^+ \rightarrow J/\psi \tau^+ \nu_{\tau} \text{ - CMS-PAS-BPH-22-012 : (NEW)} \\ R(K) : B^{\pm} \rightarrow K^{\pm} \ell^+ \ell^- \text{ - CMS-PAS-BPH-22-005 : (NEW)} \end{array}$

Studies of discrete symmetries

 $\phi_s:B^0_s\to J/\psi\phi(1020)$ - Phys. Lett. B 816 (2021) 136188 $A_{FB},F_L:B^+\to K^{*+}\mu^+\mu^-$ - JHEP 04 (2021) 124

4. Summary and take away lesson

Current status of CMS and B-Physics

- We had L_{int} = pp : 29.89 fb⁻¹ in 2023
- Total L_{int} = pp : 245.54 fb⁻¹
- Flagship analysis : CP asymmetry, LFV, rare B decays (B⁰_S → μμ)
- For more challenging aspects : Phase-2 TDR

In this talk:

Doubly Dalitz decay, flavor changing neutral current

 $\blacktriangleright \quad \eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-, \ B^{\mathbf{0}}_{\mathbf{s}} \rightarrow \mu^+ \mu^-$

Accidental symmetry : LFUV : BABAR,Belle,Belle-II, LHCb combined departure in $R(D^*) \sim 3.3\sigma$ wrt SM

$$\bullet \quad \tau \to \mathbf{3}\mu, \ B_c^+ \to J/\psi \tau^+ \nu_{\tau}, \ B^{\pm} \to K^{\pm} \ell^+ \ell^-$$

Matter-antimatter asymmetry : CP asymmetry

•
$$B_s^{0} \to J/\psi \phi$$
(1020), $B^+ \to K^{*+} \mu^+ \mu^-$

Spectroscopy

$$\eta \to \mu^+ \mu^- \mu^+ \mu^-$$
 - Phys. Rev. Lett. 131 (2023) 091903 : NEW $B_s^0 \to \mu^+ \mu^-$ properties - Phys. Lett. B 842 (2023) 137955

 $\eta \to \mu^+ \mu^- \mu^+ \mu^-$

- Double Dalitz decay of η is the precision test of SM and sensitive to the BSM
- $\gamma \eta$ interaction contributes to the hadronic LBL component of a_{μ}
- *pp* collision data : 101 fb⁻¹
- $\begin{array}{l} \blacktriangleright \quad \eta \rightarrow 4\mu \mbox{ mass window : } 0.53\mbox{-}0.57 \\ \mbox{GeV, normalization channel} \\ \eta \rightarrow 2\mu \end{array}$

First measurement of the rare doubly Dalitz decay of $\eta
ightarrow 4\mu$

$$\frac{\mathcal{B}_{\mathbf{4}\mu}}{\mathcal{B}_{\mathbf{2}\mu}} = \frac{N_{\mathbf{4}\mu}}{\sum_{ij} N_{\mathbf{2}\mu}^{ij} \frac{A_{\mathbf{4}\mu}^{ij}}{A_{\mathbf{2}\mu}^{ij}}}$$

i, j: bin numbers , 32 bins in p_T in the range of 7 – 70 GeV

 $\mathcal{B}(\eta \to 4\mu) = [5.0 \pm 0.8(\text{stat}) \pm 0.7(\text{syst}) \pm 0.7(\mathcal{B}_{2\mu})] \times 10^{-9}$

${\rm B_s^0} \to \mu^+ \mu^-$

- 1. Data : $\sqrt{s} = (2016 2018)13$ TeV.
- 2. Integrated luminosity : $\mathcal{L}_{int} = 140 \text{ fb}^{-1}$

- 1. Normalization and control channel : $B^+ \to J/\psi K^+, \, B^0_s \to J/\psi \phi$
- 2. Background : Combinatorial, rare B decays with two muons : $B \rightarrow h\mu\mu$, $h \in (\pi, K, p)$, rare B decays with two hadron : $B \rightarrow h'h'$

 $B^0_s \to \mu^+ \mu^-$

1. HLT : Di-
$$\mu$$
 : 4.8(4.5) < $m_{\mu^+\mu^-}$ < 6.0 GeV Run-I(Run-II)

2.
$$d_{ca} < 0.5 \,\mathrm{cm}, P(\chi^2/dof) > 0.5\%$$

Branching fraction :

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \frac{N_{s}}{N_{obs}^{B+}} \frac{f_{u}}{f_{s}} \frac{\epsilon_{tot}^{B+}}{\epsilon_{tot}} \mathcal{B}(B^{+} \to J/\psi K^{+}) \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}); \quad B^{0} : \frac{f_{d}}{f_{u}}$$

Result :

$$\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+}\mu^{-}) = [3.83^{+0.38}_{-0.36}(\mathrm{stat})^{0.19}_{-0.16}(\mathrm{syst})^{0.14}_{-0.13}(\mathit{f_{s}/f_{u}})] \times 10^{-9}$$

 ${\rm B_s^0} \to \mu^+ \mu^-$

PDF for lifetime determination (2DUML):

$$\begin{split} \mathcal{P}(m_{\mu+\mu-},t;\sigma_t) &= N_{\mathrm{sig}}P_{\mathrm{sig}}(m_{\mu+\mu-})\mathsf{T}_{\mathrm{sig}}(t;\sigma_t)\epsilon_{\mathrm{sig}}(t) \\ &+ N_{\mathrm{peak}}P_{\mathrm{peak}}(m_{\mu+\mu-})\mathsf{T}_{\mathrm{peak}}(t;\sigma_t)\epsilon_{\mathrm{peak}}(t) \\ &+ N_{\mathrm{semi}}P_{\mathrm{semi}}(m_{\mu+\mu-})\mathsf{T}_{\mathrm{semi}}(t;\sigma_t)\epsilon_{\mathrm{semi}}(t) \\ &+ N_{\mathrm{comb}}P_{\mathrm{comb}}(m_{\mu+\mu-})\mathsf{T}_{\mathrm{comb}}(t;\sigma_t) \end{split}$$

Determined lifetime value

 $au_{\mu^+\mu^-} = [1.83^{+0.23}_{-0.20}(\text{stat})^{0.04}_{0.04}(\text{syst})]_{\text{ps}}$

A complimentary 1DUML is performed using sWeight toward unfolding the $\tau_{\mu^+\mu^-}$ which is consistent with the 2DUML.

Lepton flavour violation

$$\begin{array}{l} \tau \rightarrow 3\mu \text{ - CMS-PAS-BPH-22-012 : NEW} \\ R(J/\psi) : B_c^+ \rightarrow J/\psi \tau^+ \nu_\tau \text{ - CMS-PAS-BPH-22-012 : NEW} \\ R(K) : B^\pm \rightarrow K^\pm \ell^+ \ell^- \text{ - CMS-PAS-BPH-22-005 : NEW} \end{array}$$

Lepton flavour universality violation

Lattice QCD results : form factor (B → K)extrapolation is residing far from exact SU(3) symmetry : extra momentum contribution in the matrix elements through the form factors

- Origin of the deviation : indicates violation of the Lepton flavor universality, a symmetry in the gauge sector and an accidental near-symmetry of the Yukawa sector of the standard model by which all leptons couple with the same strength
- B⁺_c→ J/ψτ⁺ν_τ, B[±] → K[±]ℓ⁺ℓ⁻ : the unknown QCD corrections enters through the matrix elements of the decays in terms of the form factors (QCD review, PDG)
- Lattice, Lepto-quarks model in the non-perturbative and perturbative limits of QCD has tried to incorporate additional couplings by considering additional particle or lattice corrections

10/35

$au ightarrow 3\mu$ - introduction

- ▶ In SM (sourced by neutrino transition in loops) $\mathcal{B} \sim \mathcal{O}(10^{-55})$
- ▶ BSM scenarios : $\mathcal{B} \sim \mathcal{O}(10^{-10})$, attainable at current LHC energy
- Data : 2017+2018 (new), Combined with 2016 results
- ▶ $\tau \rightarrow 3\mu$: two category search : HF : $D_s^+ \rightarrow \tau^+ \nu_\tau$, $B^+/B^0 \rightarrow \tau + X$, W boson : $W^+ \rightarrow \tau^+ \nu_\tau$
- Branching fraction from event yield :

$$N_{3\mu(\mathrm{D})} = N_{\mu\mu\pi} \frac{\mathcal{B}(\mathrm{D}_{\mathrm{s}}^{+} \to \tau^{+}\nu_{\tau})}{\mathcal{B}(\mathrm{D}_{\mathrm{s}}^{+} \to \phi\pi^{+} \to \mu^{+}\mu^{-}\pi^{+})} \frac{\mathcal{A}_{3\mu(\mathrm{D})}}{\mathcal{A}_{\mu\mu\pi}} \frac{\epsilon_{3\mu(\mathrm{D})}^{\mathrm{reco}}}{\epsilon_{\mu\mu\pi}^{\mathrm{reco}}} \frac{\epsilon_{3\mu(\mathrm{D})}^{2\mu\mathrm{trig}}}{\epsilon_{\mu\mu\pi}^{2\mu\mathrm{trig}}} \mathcal{B}(\tau \to 3\mu)$$

$$N_{3\mu(B)} = N_{\mu\mu\pi} f \frac{\mathcal{B}(B \to \tau + X)}{\mathcal{B}(B \to D_{s}^{+} + X)\mathcal{B}(D_{s}^{+} \to \phi\pi^{+} \to \mu^{+}\mu^{-}\pi^{+})} \frac{\mathcal{A}_{3\mu(B)}}{\mathcal{A}_{\mu\mu\pi}} \frac{\epsilon_{3\mu(B)}^{\text{reco}}}{\epsilon_{\mu\mu\pi}^{\text{reco}}} \frac{\epsilon_{3\mu(B)}^{2\mu\text{trig}}}{\epsilon_{\mu\mu\pi}^{2\mu\text{trig}}} \mathcal{B}(\tau \to 3\mu)$$

$$N_{3\mu(W)} = \mathcal{L}\,\sigma(pp \rightarrow W + X)\,\mathcal{B}(W \rightarrow \tau\nu_{\tau})\,\mathcal{A}_{3\mu(W)}\,\epsilon_{3\mu(W)}\,\mathcal{B}(\tau \rightarrow 3\mu)$$

$\tau \to 3 \mu$ - discriminators with highest power

- DCA to the 3µ vertex of all other tracks (p_T > 1GeV)
- muon reconstruction quality BDT score of the lowest p_T muon of the triplet

Best discriminators :

- α_{3D}: 3D angle between p
 _{3µ} and the vector from the beamline to three particle common vertex
- χ^2/DOF of the 3μ vertex fit

$au ightarrow 3\mu$ - result

$$\begin{array}{l} \blacktriangleright \quad A: \, \sigma_m = 12 \, \, {\rm MeV}, \, \sigma_m/m < 0.07\% \\ \hline B: \, \sigma_m = 19 \, \, {\rm MeV}, \, 0.07 < \, \sigma_m/m < 1.05\% \\ \hline C: \, \sigma_m = 25 \, \, {\rm MeV}, \, \sigma_m/m > 1.05\% \end{array}$$

2017+2018 data is combined with 2016 data : $L_{int} = 131 \text{ fb}^{-1}$, the observed(expected) upper limit on $\mathcal{B}(\tau \to 3\mu)$

- CL 90% : $2.9(2.4) \times 10^{-8}$
- CL 95% : $3.6(3.0) \times 10^{-8}$

$R(J/\psi): B_c^+ \to J/\psi \tau^+ \nu_{\tau}$

$$\blacktriangleright \quad R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}, J/\psi \to \mu^+ \mu^-, \ \tau^+ \to \mu^+ \nu_{\mu} \nu_{\tau}$$

- L1 trigger : events with 3 muons , leading µ : p_T > 5 GeV, sub-leading µ : p_T > 3 GeV, no p_T requirement for sub-sub-leading muon
- 2 muons from the common vertex of J/ψ and muon (μ⁺μ⁻μ⁺) not originating from J/ψ vertex referred as 3rd muon
- Offline selections : HLT : $J/\psi + \mu$, $d_{xy} < 0.05 \text{ cm}$, $d_0 < 0.2 \text{ cm}$, $\mathcal{P}(B_c^+(3^{rd} \mu)\text{vertex}) > 0.01\%$,
- $m_{B_c^+} < 10 \, \text{GeV}, p_T^{\mu 1} > 6 \, \text{GeV}, \, p_T^{\mu 2, \mu 3} > 4 \, \text{GeV}$
- Discriminator between $\mu \& \tau$ channel : $q^2 = (\rho_{B_c^+} - \rho_{J/\psi})^2, \rho_{B_c^+} = m_{B_c^+}^{-}/m_{\mathbf{3}\mu}^{\mathbf{vis}} \cdot p_{\mathbf{3}\mu}^{\mathbf{vis}}, IP3D/\sigma_{IP3D}, L_{xy}/\sigma_{L_{xy}}$

 π, K : misidentified as μ : fakes, $H_b \rightarrow J/\psi(\mu^+\mu^-) + \mu^+$

 $R(J/\psi): B_c^+ \to J/\psi \tau^+ \nu_{\tau}$

Physics comparison with data in q^2 discriminator

 ${\it m}(3\mu) < {\it m}_{B_c^+}, \; {\it q^2} > 5.5 \, {
m GeV}^2, \; {\it IP3D}/\sigma_{\it IP3D} > 2$

$$R(J/\psi) = 0.17^{0.18}_{-0.17}(\text{stat})^{+0.21}_{-0.22}(\text{syst})^{0.19}_{-0.18}(\text{theo})$$

This result will certainly help the theory to be more tuned

 $R(K): B^{\pm} \rightarrow K^{\pm} \ell^+ \ell^-$

- In order to avoid systematics in the low momentum region double ratio method is approached
- $\blacktriangleright R(K)(q^2) = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)(q^2)}{\mathcal{B}(B^+ \to J/\psi(\mu^+ \mu^-)K^+)} / \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)(q^2)}{\mathcal{B}(B^+ \to J/\psi(e^+ e^-)K^+)}$
- The analysis exploits the usage of B-Parking (POS-EPS-2019-139) data collected with a delayed trigger
- $\begin{array}{l} \blacktriangleright \quad \mathsf{L1}: \ \mu_{trig}: p_t > 9 \ \mathsf{GeV}, \ lP_{XY} / \sigma_{XY} > 6, \ \mu_2: p_t > 2 \ \mathsf{GeV}, \\ \Delta z(\mu_{trig}, K^+) < 1 \ \mathsf{cm}, \ \Delta z(\mu_{trig}, \mu_2) < 1 \ \mathsf{cm} \end{array}$
- Offline selections : HLT : $p_T(K^+) > 1 \text{ GeV}, p_T(B^+) > 3 \text{ GeV}, L_{xy}/\sigma_{Lxy} > 1, P_{B^+\text{vextex}} > 10^{-5},$
- $\cos \alpha_{3D}(B^+) > 0.9, \ 5.0 < m_{B^+} < 5.6 \, \text{GeV}$

 $R(K): B^{\pm} \to K^{\pm} \ell^+ \ell^-$

Yield in three different resonance bin, for electrons a dedicated low momentum algorithm (LP) was in application, for *details please visit our physics summary*

Channel	q ² range	Yield
$B^+ \rightarrow K^+ \mu^+ \mu^-$	1.1–6.0 GeV ²	1267 ± 55
$\mathrm{B^+} ightarrow \mathrm{J/}\psi(\mu^+\mu^-)\mathrm{K^+}$	$8.41 - 10.24 \text{GeV}^2$	728000 ± 1100
$\mathrm{B^+} \rightarrow \psi(\mathrm{2S})(\mu^+\mu^-)\mathrm{K^+}$	12.60–14.44 GeV ²	68300 ± 500

Channel	q ² range	PF-PF yield	PF-LP yield
$B^+ \rightarrow K^+ e^+ e^- (\text{low-}q^2)$	1.1-6.0 GeV ²	17.9 ± 7.2	3.0 ± 5.9
$B^+ \rightarrow J/\psi(e^+e^-)K^+$	8.41-10.24 GeV ²	4857 ± 84	2098 ± 58
$\mathrm{B^+} \rightarrow \psi(\mathrm{2S})(\mathrm{e^+e^-})\mathrm{K^+}$	12.60-14.44 GeV ²	320 ± 20	94 ± 11

Likelihood function from the fit profiled as a function of $R(K)^{-1}$

Mass yield signals : signal and background sums the total pdf of the fit.

In the $1.1 < q^{\mathbf{2}} < 6.0\,\mathrm{GeV}^{\mathbf{2}}$

- 1. $R(K) = 0.78^{+0.47}_{-0.23}$
- 2. $\mathcal{B}(K^{\pm}\mu^{+}\mu^{-}) = (12.42 \pm 0.68) \times 10^{-8}$
- 3. This measurement is limited by the statistical precision of the electron channel
- The inclusive branching fraction in the same ² range is consistent with and has a comparable precision to the present world average value

Studies of discrete symmetries

 $\phi_s:B^0_s\to J/\psi\phi(1020)$ - Phys. Lett. B 816 (2021) 136188 $A_{FB},F_L:B^+\to K^{*+}\mu^+\mu^-$ - JHEP 04 (2021) 124

$B^0_s \rightarrow J/\psi \phi$ introduction

- ► HFLAV includes: current CMS result ⇒
- Flavour tagged time dependent angular analysis
- We measure $\phi_s \simeq -2\beta_s$
- A robust model also open the plethora of measuring : Γ_s, ΔΓ_s, |λ|, Δm_s

$$P_{\rm S} = f\left(\sqrt{\frac{P_{tag}S}{2}}\sqrt{\frac{S}{S+B}}e^{-\frac{\sigma_{ct}^2\Delta m_s^2}{2}}\right)$$

- 1. P-Wave: $B_s^0 \rightarrow J/\psi\phi$ 1.1 $A_0: L = 0$, CP-even. 1.2 $A_{\perp}: L = 1$, CP-odd. 1.3 $A_{\parallel}: L = 2$, CP-even.
- 2. S-Wave: Non resonant $B_s^{0} \rightarrow J/\psi K^+K^-$, and $B_s^{0} \rightarrow J/\psi f_0(\rightarrow K^+K^-)$

2.1 $A_S : L = 0$, CP-even.

- 3. Transversity basis : θ_T , ϕ_T , ψ_T
- Reconstruction: kinematic fit J/ψ, fit four tracks to PV using Kalman vertex fitter, save best B_s candidate with highest vertex fit probability.
- 5. Physics selections : Optimization GA.

 $B^0_s \rightarrow J/\psi \phi$ Decay Rate

$$\frac{d^{\mathbf{4}}\Gamma(B_{s}^{\mathbf{0}}(t))}{d\Theta dt} = \widetilde{\mathcal{F}}(\Theta, ct, \alpha) = \sum_{i=1}^{\mathbf{10}} \mathcal{O}_{i}(\alpha, t) \cdot g_{i}(\Theta)$$
(1)

$$\mathcal{O}_{i} = N_{i}e^{-\Gamma_{s}t}\left[a_{i}\cosh\left(\frac{1}{2}\Delta\Gamma_{s}t\right) + b_{i}\sinh\left(\frac{1}{2}\Delta\Gamma_{s}t\right) + c_{i}\xi(1-2\omega)\cos\left(\Delta m_{s}t\right) + d_{i}\xi(1-2\omega)\sin\left(\Delta m_{s}t\right)\right]$$
(2)

i .	$g_i(heta_{ au},\psi_{ au},arphi_{ au})$	Ni	a,	b _i	c;	di
1	$2 \cos^2 \psi_{\tau} (1 - \sin^2 \theta_{\tau} \cos^2 \varphi_{\tau})$	A ₀ (0) ²	1	D	С	— S
2	$\sin^2 \psi_{\tau}(1 - \sin^2 \theta_{\tau} \sin^2 \varphi_{\tau})$	A (0) 2	1	D	с	— s
3	$\sin^2 \psi_{\tau} \sin^2 \theta_{\tau}$	$ A_{\perp}(0) ^2$	1	- D	с	s
4	$-\sin^2\psi_{ au}\sin2 heta_{ au}\sinarphi_{ au}$	A (0) A _⊥ (0)	$c_{sin}(\delta_{\perp} - \delta_{\parallel})$	$\frac{s}{\cos}\left(\delta_{\perp} - \delta_{\parallel}\right)$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D_{cos}(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{\sqrt{2}} \sin 2\psi_{\tau} \sin^2 \theta_{\tau} \sin 2\varphi_{\tau}$	A ₀ (0) A (0)	$\cos(\delta_{\parallel} - \delta_{0})$	$D_{cos}(\delta_{\parallel} - \delta_{0})$	$\frac{c}{c} \cos \left(\delta_{\parallel} - \delta_{0} \right)$	$-s \cos(\delta_{\parallel} - \delta_{0})$
6	$\frac{1}{\sqrt{2}} \sin 2\psi_{\tau} \sin 2\theta_{\tau} \cos \varphi_{\tau}$	$ A_0(0) A_{\perp}(0) $	$c \sin(\delta_{\perp} - \delta_0)$	$\frac{S}{cos}(\delta_{\perp} - \delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D_{cos}(\delta_{\perp} - \delta_0)$
7	$\frac{v_2}{3}(1 - \sin^2 \theta_{\tau} \cos^2 \varphi_{\tau})$	$ A_{S}(0) ^{2}$	1	-D	с	s
8	$\frac{1}{3}\sqrt{6}\sin\psi_{\tau}\sin^2\theta_{\tau}\sin 2\varphi_{\tau}$	$ A_{S}(0) A_{ }(0) $	$c \cos(\delta_{\parallel} - \delta_s)$	$\frac{s \sin(\delta_{\parallel} - \delta_s)}{\delta_{\parallel}}$	$\cos(\delta_{\parallel} - \delta_s)$	$D_{sin}(\delta_{\parallel} - \delta_{s})$
9	$\frac{1}{2}\sqrt{6}\sin\psi_{\tau}\sin 2\theta_{\tau}\cos\varphi_{\tau}$	$ A_{S}(0) A_{\perp}(0) $	$sin(\delta_{\perp} - \delta_s)$	$-D \sin(\delta_{\perp} - \delta_s)$	$c_{sin}(\delta_{\perp} - \delta_s)$	$\frac{s}{sin}(\delta_{\perp} - \delta_s)$
10	$\frac{4}{3}\sqrt{3}\cos\psi_{\rm T}(1-\sin^2\theta_{\rm T}\cos^2\varphi_{\rm T})$	$\left A_{S}(0)\right \left A_{0}(0)\right $	$c_{\cos}(\delta_0 - \delta_s)$	${\scriptstyle {\rm S}\sin(\delta_{\rm 0}-\delta_{\rm S})}$	$\cos(\delta_{\rm 0}-\delta_{\rm S})$	${}^{\rm D}\sin(\delta_{\rm 0}-\delta_{\rm S})$

$$C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2}, \qquad S = -\frac{2|\lambda|\sin\phi_s}{1 + |\lambda|^2}, \qquad D = -\frac{2|\lambda|\cos\phi_s}{1 + |\lambda|^2}$$
(3)

C is sensitive to direct CPV and S is sensitive to small ϕ_s

Flavour tagging

1. *b* quarks are produced in $b\bar{b}$ pairs.

- 2. Additional muon is used to Tag the flavour of B_s^0 , via $b \to \mu X$ decays of the other b
- 3. OS-muon tagger, tagging variable : μ^{Q} $\mu^{-} \rightarrow os : b \rightarrow signal : \bar{b}$ $\mu^{+} \rightarrow os : \bar{b} \rightarrow signal : b$
- 4. Developed : simulated $B_s^0 \rightarrow J/\psi \phi$, Calibrated : self tagged $B^{\pm} \rightarrow J/\psi K^{\pm}$.

Figures of merit :

- 1. $\epsilon_{tag} = N_{tag} / N_{total}$: tagging efficiency.
- 2. $\omega_{tag} = N_{tag,wrong}/N_{tag}$: per-event mistag probability evaluated with a DNN.
- 3. $P_{\text{tag}} = \epsilon_{\text{tag}} (1 2\omega_{\text{tag}})^2$: tagging power.
- 4. $f_{dnn} = 1 \omega_{\text{evt}}$.

Dataset	$\epsilon_{ m tag}(\%)$	$\omega_{ m tag}(\%)$	$P_{ m tag}(\%)$
2017	$(45.7 \pm 0.1)\%$	$(27.1 \pm 0.1)\%$	$(9.6 \pm 0.1)\%$
2018	$(50.9 \pm 0.1)\%$	$(27.3 \pm 0.1)\%$	$(10.5\pm0.1)\%$

21/35

Final Results

 ϕ_s and $\Delta\Gamma_s$ are consistent with SM prediction (arXiv:1102.4274).

 $\phi_{s} = -11 \pm 50 \,(\text{stat}) \pm 10 \,(\text{syst}) \,\text{mrad}, \, \Delta\Gamma_{s} = 0.114 \pm 0.014 \,(\text{stat}) \pm 0.007 \,(\text{syst}) \,\text{ps}^{-1}$

 Γ_s and Δm_s are consistent with world average values (PhysRevD.98.030001).

 $\Gamma_{s} = 0.6531 \pm 0.0042 \, (\mathrm{stat}) \pm 0.0026 \, (\mathrm{syst}) \, \mathrm{ps}^{-1}, \ \Delta \mathrm{m_{s}} = 17.51 \pm^{+0.10}_{-0.09} \, (\mathrm{stat}) \pm 0.03 \, (\mathrm{syst}) \, \hbar \mathrm{ps}^{-1}$

Further combined with $\sqrt{s} = 8 \text{ TeV}$ result (PLB2016.03.046)

 $\phi_{s} = -21 \pm 44 \,({
m stat}) \pm 10 \,({
m syst}) \,{
m mrad}, \, \Delta\Gamma_{s} = 0.1032 \pm 0.0095 \,({
m stat}) \pm 0.0048 \,({
m syst}) \,{
m ps^{-1}}$

1. $|\lambda|$ is consistent with no direct CP violation.

 $|\lambda| = 0.972 \pm 0.026(\text{stat}) \pm 0.003(\text{syst})$

- 2. First time CMS measures $|\lambda|$ and Δm_s .
- 3. A precise measurement with all taggers and with a $J/\psi TrkTrk$ trigger is in the pipeline.

$A_{FB}, F_L: B^+ \to K^{*+} \mu^+ \mu^-$ - introduction

- Measurement of forward-backward asymmetry (A_{FB}), and longitudinal polarization (F_L)
- This result is based on the 8TeV data with $L_{int} = 20 \text{ fb}^{-1}$
- Angular analysis with two angles : θ_K , & θ_I
- Two oppositely charged muon : $p_T > 3.5 \text{ GeV}, \& |\eta| < 2.2 \text{ fitted to a}$ common vertex with $\chi^2(\mathcal{P}_{vtx}) < 10\%$
- $\cos \alpha < 0.9, {p_T^{\mu^+ \mu^-}} > 6.9 \, \text{GeV}$
- ▶ Offline signal reconstructed with a $K^{*+}(\rightarrow K^0_s \pi^+)$ and the two muons already selected
- 4.8 < $m_{K_s^0 \pi^+ \mu^+ \mu^-}$ < 5.8 GeV

decay distribution as function of q^2 :

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_{\mathrm{K}} \, \mathrm{d} \cos \theta_{\ell} \, \mathrm{d} q^2} &= \frac{9}{16} \left\{ \frac{2}{3} \left[F_{\mathrm{S}} + 2 A_{\mathrm{S}} \cos \theta_{\mathrm{K}} \right] \left(1 - \cos^2 \theta_{\ell} \right) \right. \\ &+ \left(1 - F_{\mathrm{S}} \right) \left[2 F_{\mathrm{L}} \cos^2 \theta_{\mathrm{K}} \left(1 - \cos^2 \theta_{\ell} \right) \right. \\ &+ \left. \frac{1}{2} \left(1 - F_{\mathrm{L}} \right) \left(1 - \cos^2 \theta_{\mathrm{K}} \right) \left(1 + \cos^2 \theta_{\ell} \right) \\ &+ \left. \frac{4}{3} A_{\mathrm{FB}} \left(1 - \cos^2 \theta_{\mathrm{K}} \right) \cos \theta_{\ell} \right] \right\}. \end{split}$$

fit model : signal + background

$$pdf(m, \cos\theta_{K}, \cos\theta_{\ell}) = Y_{S} S^{m}(m) S^{a}(\cos\theta_{K}, \cos\theta_{\ell}) \epsilon(\cos\theta_{K}, \cos\theta_{\ell}) + Y_{B} B^{m}(m) B^{\theta_{K}}(\cos\theta_{K}) B^{\theta_{\ell}}(\cos\theta_{\ell}).$$

 $A_{FB}, F_L: B^+ \to K^{*+} \mu^+ \mu^-$ - final fit

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のQ@ 24/35

$A_{FB}, F_L: B^+ \rightarrow K^{*+} \mu^+ \mu^-$ - results

The results are shown with black square which comprises both statistical and total uncertainties and a comparison with SM is also shown in the plot advocates about the consistency with SM

- ▶ The vertical shaded regions corresponds to the regions dominated by $B^+ \rightarrow K^{*+}J/\psi$ and $B^+ \rightarrow K^{*+}\psi(2S)$ decays
- These are the first results from this exclusive decay mode and are in agreement with a standard model prediction

Summary

- We have presented the results of some of the flagship analyses of CMS B-Physics Analysis Group (BPAG)
- These results are competitive with results of dedicated b-factories, such as Belle or LHCb
- These are the results with highest precision what CMS could achieved with Run-I and Run-II data
- Many new exciting ideas are being materializing now in terms of analyses, tagging algorithm, and trigger lines
- Our experience with systematic uncertainties reflects that CMS was in great condition in the last Runs (Run-1 & Run-II) and CMS is ready to unfold various unknown features of flavour physics in the upcoming Run-III.

Back-up

Maximum likelihood fit

Event PDF :

$$P = \frac{N_{\rm sig}}{N_{\rm tot}} \; P_{\rm sig} + \frac{N_{\rm bkg}}{N_{\rm tot}} \; P_{\rm bkg} \label{eq:phi}$$

Negative log likelihood :

$$-\ln \mathcal{L} = -\sum_{i=0}^{N_{\mathrm{evt}}} \ln P_i + N_{\mathrm{tot}} - N_{\mathrm{evt}} \ln N_{\mathrm{tot}}$$

 $P_{\text{sgn}} = \epsilon(ct) \,\epsilon(\Theta) \left[\widetilde{\mathcal{F}}(\Theta, ct, \alpha) \otimes G(ct, \sigma_{ct}) \right] P_{\text{sgn}}(\mathbf{m}_{B_{c}} \mathbf{0}) \, P_{\text{sgn}}(\sigma_{ct}) \, P(\xi)_{\text{sgn}} \,,$

 $P_{\text{comb}} = P_{\text{comb}}(\cos\theta_{T}, \phi_{T}) P_{\text{comb}}(\cos\psi_{T}) P_{\text{comb}}(ct) P_{\text{comb}}(m_{B_{S}^{\mathbf{0}}}) P_{\text{comb}}(\sigma_{ct}) P(\xi)_{\text{comb}}, \quad (4)$ $P_{\text{peak}} = P_{\text{peak}}(\cos\theta_{T}, \phi_{T}) P_{\text{peak}}(\cos\psi_{T}) P_{\text{peak}}(ct) P_{\text{peak}}(m_{B_{S}^{\mathbf{0}}}) P_{\text{peak}}(\sigma_{ct}) P(\xi)_{\text{peak}},$

- 1. $\epsilon(ct) \epsilon(\Theta)$: Efficiency.
- 2. $\widetilde{\mathcal{F}}(\Theta, ct, \alpha)$: Decay distribution.
- 3. $G(ct, \sigma_{ct})$: Gaussian resolution.

- 1. $P(m_{B_{\bullet}^{0}})$: Mass PDFs.
- 2. $P(\sigma_{ct})$: Decay time uncertainty PDFs.
- 3. $P(\xi)$: Tag distribution.

Decay time and angular background :

 $P(\cos \theta_T, \phi_T), P(\cos \psi_T), P(\overline{ct})$

The peaking background $P_{\rm peak}$ is originated from the decay $B^0_d \to J/\psi \, K^{*0} \to \mu^+ \mu^- \, K^+ \pi^-$ where the pion is misidentified as a kaon.

One dimensional Data fit projections

One dimensional projection of multidimensional unbined extended maximum likelihood fit.

$B^0_s\text{-}\overline{B}^0_s$ mixing

1. Direct CPV :

 $P(B_s^0 \to f) \neq P(\overline{B}_s^0 \to \overline{f})$

2. Indirect CPV in mixing :

 $P(B^0_{s} \rightarrow \overline{B}^0_{s}) \neq P(\overline{B}^0_{s} \rightarrow B^0_{s})$

3. CPV in Interference :

 $\mathrm{P}(\mathrm{B}^0_{\mathrm{s}} \to \mathrm{f_{cp}}) \neq \mathrm{P}(\mathrm{B}^0_{\mathrm{s}} \to \overline{\mathrm{B}}^0_{\mathrm{s}} \to \overline{\mathrm{f}}_{\mathrm{cp}})$

Time dependent CPV

$$\begin{aligned} \mathbf{a}_{\rm cp} &\propto \mathsf{\Gamma}(\overline{\mathbf{B}}_{\rm s}^0 \to \mathbf{f}_{\rm cp}) - \mathsf{\Gamma}(\mathbf{B}_{\rm s}^0 \to \mathbf{f}_{\rm cp}) \\ &\propto \eta_{\rm f} \sin(\phi_{\rm s}) \sin(\Delta \mathbf{m}_{\rm s} \mathbf{t}) \end{aligned} \tag{5}$$

$$\left| B_{L,H} \right\rangle = p \left| B_s^0 \right\rangle \pm q \left| \overline{B}_s^0 \right\rangle, \quad |p|^2 + |q|^2 = 1$$

$$\begin{split} m_{\rm s} &= \frac{M_{\rm L}+M_{\rm H}}{2}, \quad \Delta m_{\rm s} = M_{\rm H}-M_{\rm L} \\ \Gamma_{\rm s} &= \frac{\Gamma_{\rm H}+\Gamma_{\rm L}}{2}, \qquad \Delta \Gamma_{\rm s} = \Gamma_{\rm L}-\Gamma_{\rm H} \end{split}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (0 30 / 35

$\mathsf{CPV}: B^0_s \text{ meson}$

The very definition of the convention independent parameter λ_{cp} specific for the

 ${\rm B}^{\mathbf{0}}_{\rm s}\to {\rm J}/\psi\phi\to\mu^+\mu^-{\rm K}^+{\rm K}^-$ decay can be defined by combining the mixing and tree level $b\to c\bar{c}s$ transition,

$$\begin{aligned} \lambda_{\rm cp} &= \left(\frac{p}{q}\right)_{B_{\rm s}^{\rm o}} \frac{\bar{A}_{J/\psi\phi}}{A_{J/\psi\phi}} \\ &= \mathcal{E}_{\rm cp} \left(\frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*} \frac{V_{cs}^* V_{cb}}{V_{cs} V_{cb}^*}\right) \\ &= \mathcal{E}_{\rm cp} \frac{e^{-i\beta_s}}{(e^{-i\beta_s})^*} \\ &= \mathcal{E}_{\rm cp} e^{-2i\beta_s} \end{aligned}$$
(6)

$$B_{s}^{0}: V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

 B^0_s interference case :

$$arg(\lambda_{
m cp}) = -2eta_s \simeq \phi_s$$

 λ_{CD} : conditions

- 1. $|\bar{A}/A| \neq 1 \rightarrow \text{direct CPV}$
- 2. $|q/p| \neq 1 \rightarrow \text{indirect CPV}$
- 3. $\operatorname{Im}(\lambda) \to \operatorname{interference} \mathsf{CPV}$

$\tau \rightarrow 3\mu$

ŝ

CMS

CMS

CMS

<ロ> <四> <四> <四> <三</p> 32 / 35

Systematic uncertainty - $B^0_{\rm s}$ meson

ϕ_s [mrad]	$\Delta\Gamma_s$ [ps ⁻¹]	Δm_s [$\hbar ps^{-1}$]	X	Γ_s [ps ⁻¹]	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{\rm S} ^2$	δ [rad]	δ_{\perp} [rad]	δ _{S⊥} [rad]
50	0.014	0.10	0.026	0.0042	0.0047	0.0063	0.0077	0.12	0.16	0.083
7.9	0.0019	_	0.0035	0.0005	0.0002	0.0012	0.001	0.020	0.016	0.006
-	-	-	0.0046	0.0003	-	0.0013	0.001	0.017	0.019	0.011
3.8	0.0006	0.007	0.0057	0.0002	0.0008	0.0010	0.002	0.006	0.015	0.015
0.3	0.0062	0.001	0.0002	0.0022	0.0014	0.0023	0.001	0.001	0.002	0.002
3.5	0.0009	0.021	0.0015	0.0006	0.0007	0.0009	0.007	0.006	0.025	0.022
0.6	0.0008	0.004	0.0003	0.0003	0.0044	0.0029	0.007	0.007	0.007	0.028
0.5	$< 10^{-4}$	0.006	0.0002	$< 10^{-4}$	0.0003	$< 10^{-4}$	$< 10^{-3}$	0.001	0.007	0.001
3.0	-	-	-	0.0005	-	0.0008	-	-	-	0.006
0.3	0.0008	0.011	$< 10^{-4}$	0.0002	0.0005	0.0002	0.003	0.005	0.007	0.011
_	0.0010	0.019	-	0.0005	0.0005	_	0.013	-	0.019	0.019
$< 10^{-1}$	0.0019	0.028	0.0004	0.0008	0.0006	0.0008	0.001	0.001	0.002	0.005
10.0	0.0070	0.032	0.0083	0.0026	0.0049	0.0045	0.016	0.028	0.045	0.048
	ϕ_s [mrad] 50 7.9 3.8 0.3 3.5 0.6 0.5 3.0 0.3 <10 ⁻¹ 10.0	$ \begin{array}{ccc} \phi_{1} & \Delta \Gamma_{s} \\ [mrad] & [ps^{-1}] \\ 50 & 0.014 \\ 7.9 & 0.0019 \\ - & - \\ 0.3 & 0.0065 \\ 0.3 & 0.0005 \\ 0.5 & 0.0009 \\ 0.6 & 0.0009 \\ 0.5 & - (10^{-4} \\ 3.0 & - \\ 0.3 & 0.0008 \\ - \\ 0.3 & 0.00018 \\ - \\ 0.0019 \\ 10.0 & 0.0070 \\ \end{array} $	$\begin{array}{cccc} \varphi_{1} & \Delta \Gamma_{1} & \Delta m_{t} \\ [mrad] & [ps^{-1}] & [h ps^{-1}] \\ 50 & 0.014 & 0.10 \\ \hline 7.9 & 0.0019 & - \\ - & - \\ 3.6 & 0.0006 & 0.007 \\ 0.3 & 0.0062 & 0.001 \\ 3.5 & 0.0009 & 0.021 \\ 0.6 & 0.0008 & 0.004 \\ 0.5 & <10^{-4} & 0.006 \\ 3.0 & - \\ 0.3 & 0.0018 & 0.011 \\ - \\ - & 0.0019 & 0.028 \\ 10.0 & 0.0070 & 0.032 \end{array}$	$ \begin{array}{c} \varphi_{1} & \Delta \Gamma_{1} & \Delta m_{1} & \lambda \\ [mad] & [ps^{-1}] & [\lambda ps^{-1}] & \lambda \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 60 & 0.014 & 0.10 & 0.026 \\ \hline \end{array} \\ \begin{array}{c} 7.9 & 0.0019 & - & 0.0035 \\ - & - & - & 0.0046 \\ 3.8 & 0.0066 & 0.007 & 0.0057 \\ 0.3 & 0.0062 & 0.001 & 0.0002 \\ 3.5 & 0.0009 & 0.021 & 0.0015 \\ 0.6 & 0.0008 & 0.004 & 0.0003 \\ 0.5 & <10^{-4} & 0.006 & 0.0002 \\ 3.0 & - & - & - \\ 0.3 & 0.0008 & 0.011 & <10^{-4} \\ - & 0.0010 & 0.019 & - \\ -10^{-1} & 0.0019 & 0.032 & 0.0004 \\ 10.0 & 0.0070 & 0.032 & 0.0031 \end{array} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

- 1. ϕ_s : Model bias an angular efficiency.
- 2. $\Delta \Gamma_s$ and Γ_s : lifetime efficiency.
- 3. Δm_s : Lifetime resolution, SP- wave interference and peaking background.
- 4. $|\lambda|$: Angular efficiency and and model assumption.

$B^0_s \rightarrow \mu^+ \mu^-$ Effective lifetime

The effective lifetime : ${\rm B}^0_{\rm s} \to \mu^+ \mu^-$

$$\tau_{\mu^+\mu^-} = \frac{\int_{\mathbf{0}}^{\infty} t[\Gamma(\mathbf{B}_{\mathrm{s}}^0 \to \mu^+\mu^-) + \Gamma(\overline{\mathbf{B}}_{\mathrm{s}}^0 \to \mu^+\mu^-)]dt}{\int_{\mathbf{0}}^{\infty} [\Gamma(\mathbf{B}_{\mathrm{s}}^0 \to \mu^+\mu^-) + \Gamma(\overline{\mathbf{B}}_{\mathrm{s}}^0 \to \mu^+\mu^-)]dt}$$

and t is the proper decay time of the B^0_s meson Relation : $\tau_{\mu^+\mu^-} \leftrightarrow \tau_{B^0_s}$

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{\rm B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + 2\mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s}} \right); \quad y_{s} = \frac{\tau_{\rm B_{s}^{0}} \Delta\Gamma_{s}}{2}$$

Where,

$$\begin{split} \mathcal{A}_{\Delta\Gamma}^{\mu^+\mu^-} &\equiv -\frac{2\mathcal{R}(\lambda)}{1+|\lambda|^2}, \quad \lambda \equiv \frac{q\overline{A}_{\mu^+\mu^-}}{pA_{\mu^+\mu^-}} \\ \mathcal{A}_{\mu^+\mu^-} &: |\psi_{\mathrm{B}_{\mathrm{S}}^0}\rangle \to |\psi_{\mu^+\mu^-}\rangle \end{split}$$

CMS & LHCb combination $B_s^0 \rightarrow \mu^+ \mu^-$

Weighted distribution di-muon invariant mass and the likelihood contours in the $\mathcal{B}(B^0_d\to\mu^+\mu^-)$ versus $\mathcal{B}(B^0_s\to\mu^+\mu^-)$ plane

Reference - Nature 522 (2015) 68